The Whirlpool Galaxy Seen Through a Cosmic Lens

The Frontier Fields images, while beautiful, aren’t all that easy to comprehend to eyes outside the astronomy community. Look at them and you see streaks of light and blurry smudges mixed into a field of obvious galaxies. It can be difficult to interpret the distortions that occur as light from distant galaxies becomes magnified and bent by the vast mass of the Frontier Fields’ galactic clusters.

So here’s an interesting thought experiment. What if we could take a well-known galaxy and put it behind one of our Frontier Fields galaxy clusters? What would that look like?

Thanks to Dr. Rachael Livermore of the University of Texas at Austin and Dr. Frank Summers of the Space Telescope Science Institute, you can see for yourself. In this video simulation, the Whirlpool Galaxy, also known as M51, sweeps behind the Frontier Fields galaxy cluster Abell 2744. As it moves, the gravity of the galaxy cluster distorts the light of the Whirlpool, warping and magnifying and even multiplying its image.

Obviously, this isn’t a realistic video — galaxies don’t just take jaunts through the cosmos. But it illustrates how our image of the Whirlpool would change depending on where it was placed behind the galaxy cluster. Livermore used the Whirlpool Galaxy for this video because it’s a well-known, popular Hubble image, easily recognizable through the distortions that happen at different locations in the lensing cluster.

Take a look. After the intro, the image on the left of the dotted line shows the location of the Whirlpool behind the cluster, while the image on the right shows the lensing distortion underway.

In this simulation, we’ve moved the Whirlpool to a distance astronomers refer to as redshift 2. That far back, it would be so distant that the light we’re seeing from it would have started traveling away from the galaxy when the universe was just a quarter of its current age. If the Whirlpool were that far away in real life, its light would take 10 billion years to reach Earth.

Note that this isn’t how the Whirlpool would really appear at that distance. At such a distance, all we would be able to make out is the vivid central bulge of stars. But for the purpose of this illustration, the whole galaxy has been kept artificially bright.

The most impressive distortions occur as the Whirlpool passes behind the center of the galaxy cluster, with multiple, stretched, distorted images of the galaxy appearing. At this point, the light of the Whirlpool beaming toward Earth bends to go around the cluster, but can go either left or right. There’s no preference, so some of it goes one way, and some goes another, and we get many images of the same galaxy.

This location is ideal for astronomers, because as you can see in this illustration, the images become both stretched and magnified, allowing the galaxy structure to be seen in greater detail. Furthermore, because a gravitational lens acts much as a telescope lens, more light is focused our way, making the galaxies brighter.

This, Livermore notes, is a primary reason why astronomers are interested in these galaxy clusters – the chance to see the distant background galaxies in so much greater detail than Hubble would be able to produce on its own.

 

 

 

 

 

Spotlight on Gabriel Barnes Brammer, ESA/AURA Astronomer

This occasional series focuses on members of the Frontier Fields team. It highlights the individuals, their jobs, and the paths they took to get to where they are today.

Portrait of Gabriel Brammer

Astronomer Gabriel Brammer answers questions about his role on the Frontier Fields program and the path he took to get there.

What does a typical day on the job entail? What are your responsibilities?

A typical day involves a lot of communication: e-mail and teleconferencing with scientific collaborators around the U.S. and around the world, assisting observers with preparing their Hubble observations, and conversations and meetings with fellow members of the Hubble Wide Field Camera 3 instrument team. My research focuses on the formation and evolution of distant galaxies, often using Hubble observations. I have a position that allows me to pursue my own independent research interests along with my responsibilities supporting Hubble operations, and I appreciate that the goals of both of these aspects of my work are closely aligned.

 What specifically is your educational background?

I obtained a bachelor’s degree in astronomy from Williams College in Williamstown, Massachusetts, and a Ph.D. in astronomy from Yale University in New Haven, Connecticut.

 How did you first become interested in space?

My favorite subjects in school were always math and science, particularly physics when I was a bit older. Reading Carl Sagan’s “Cosmos” in high school always sticks with me as being a defining moment in inspiring my interest in space science and astronomy. Sagan presents such a clear connection between the beauty of the subject and the rigorous science that underlies it; I’ve seen from other profiles of my colleagues similar to this one that I’m far from alone in finding inspiration there!

Was there someone (parent, teacher, spouse, sibling, etc.) or something (book, TV show, lecture, etc.) that influenced you in developing a love for what you do, or the program you’re a part of?

The pursuit of an advanced degree in astronomy, or any field, is a very long chain that stretches over 20 years of a student’s life, obviously including a dramatic evolution in his or her own personal development and maturity. From day one I’m grateful for the tireless love, support, and encouragement from my parents and family, and I have had many excellent teachers, mentors, and role models at all stages of my education and career. Each of them represents a strong link in that chain, and without any one of them individually, the path I would have taken would likely have been very different from the one I am happy and honored to be on today.

Was there a particular event (e.g., lunar landing, first Shuttle flight, etc.) that particularly captured your imagination and led to life changes?

 The bright appearance of Comet Hale-Bopp in the winter of 1997, my junior year of high school, was a formative event for me at an opportune moment. Seeing the bright comet, a transient visitor from the outer solar system, just hanging over the horizon captivated me. As often as I could, I would drag the small telescope my dad had recently bought, along with as many friends I could muster, out to the cold, dark skies of central Iowa to see it.

Later in the summer of ’97, I went to New England to tour potential colleges, where, during a short visit to Williams College, I met Professor Jay M. Pasachoff and his students who were preparing an expedition to observe the solar eclipse in Aruba the following year. That brief encounter, along with the recent experience observing Hale-Bopp, showed me that studying astronomy would offer an ideal combination of research in the physical sciences and travel to exotic locales to observe both aesthetically and scientifically magnificent phenomena. I was privileged to later study and research with Professor Pasachoff myself, including an unforgettable expedition to observe the solar eclipse in Lusaka, Zambia, in 2001.

Gabe checks out the telescope for observations of the June 21, 2001, total solar eclipse from Lusaka, Zambia, as part of the Williams College Eclipse Expedition. Credit: J. Pasachoff.

Gabe checks out the telescope for observations of the June 21, 2001, total solar eclipse from Lusaka, Zambia, as part of the Williams College Eclipse Expedition. Credit: J. Pasachoff.

How did you first get started in the space business?

My first experience visiting and working at a professional astronomical observatory was with the National Science Foundation’s Research Experiences for Undergraduates program at the Cerro Tololo Inter-American Observatory in 2001. I must say I was pretty miserably exhausted my first night observing up on the mountain top, ready to adjust my career plans at 4 a.m., with the local radio reminding us between cumbia (dance music) hits of the glacial progress of time — “son las cuatro con cinco minutes … son las cuatro con diez minutos.” I suppose the second night was a bit better, and by the third night I was hooked.

I’ve been working at observatories ever since, now having spent something like 270 nights observing the skies from mountain tops in Arizona (Kitt Peak) and Chile (Cerros Tololo, Las Campanas, and Paranal) to valleys in Japan (Nobeyama). Going outside at night at one of these observatories and seeing the eyes of giant telescopes staring up at the sky, gathering in photons from distant objects, is an extraordinary experience. I’m happy to now have a more normal sleep schedule at the Space Telescope Science Institute, but I appreciate still being close to the day-to-day operations of Hubble as an observatory and working on the front lines as photons from distant stars and galaxies hit the detectors.

A composite image of sunset and midnight at the Very Large Telescope at Cerro Paranal, Chile.

A composite image of sunset and midnight at the Very Large Telescope at Cerro Paranal, Chile. Each of the four domes houses a telescope with a primary mirror 8.2 meters (26.9 feet) in diameter. Credit: Gabriel Brammer.

What do you think of the Hubble results, or the impact that Hubble has on society? 

Even classmates in my kids’ pre-kindergarten classes know Hubble when they see it! Hubble has something for everybody, from atmospheres of extra-solar planets to the most distant galaxies, and therefore has had an immeasurable impact on society’s scientific imagination and curiosity.

Is there a particular image or result that fascinates you?

To me the Hubble Ultra-Deep Field /eXtreme Deep Field (HUDF/XDF) represents all of the past success of Hubble and points to the future potential of Hubble and its successors like the James Webb Space Telescope in a single image. Now including near-infrared observations by the Wide Field Camera 3, installed in 2009, the HUDF/XDF shows us galaxies across some 95 percent of cosmic history, from the first star-bursting seeds of galaxies to the assembly of more massive, more regular structures of galaxies more like those we see today. The Frontier Fields represent the most recent exciting extension of the legacy begun with the Hubble Deep and Ultra-Deep Fields.

The eXtreme Deep Field, or XDF.

The eXtreme Deep Field, or XDF, was assembled by combining 10 years of NASA Hubble Space Telescope photographs taken of a patch of sky at the center of the original Hubble Ultra Deep Field. The XDF is a small fraction of the angular diameter of the full Moon. Credit: NASA, ESA, G. Illingworth, D. Magee, and P. Oesch (University of California, Santa Cruz), R. Bouwens (Leiden University), and the HUDF09 Team.

 I also love browsing through Hubble’s spectacular high-resolution images of nearby galaxies. In the deep fields, we generally infer properties of galaxies based on small, barely resolved images of their structures, while images of local galaxies such as the mosaic of M82 show many of the myriad processes that form and shape galaxies in exquisite detail. It is through the combination of these resolved nearby studies and distant surveys that Hubble has made such a large contribution in our understanding of how galaxies form and evolve.

Mosaic image from Hubble of the magnificent starburst galaxy Messier 82 (M82).

This mosaic image from Hubble of the magnificent starburst galaxy Messier 82 (M82) is the sharpest wide-angle view ever obtained of this galaxy. M82 is remarkable for its bright blue disk, webs of shredded clouds, and fiery-looking plumes of glowing hydrogen blasting out of its central regions. Credit: NASA, ESA, and The Hubble Heritage Team (STScI/AURA). Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI), and P. Puxley (National Science Foundation)

Are there specific parts of the program that you’re proud to have contributed to?

I am happy to have helped make the Frontier Fields observations as deep and as efficient as possible to maximize the scientific return from extremely valuable observing time on Hubble. With only a relatively minor change to the observing strategy, taking extra care to avoid extra glare from bright foreground light from the Earth, we enabled the Frontier Fields to see ever fainter and more distant galaxies than otherwise would have been possible.

Photo taken by Gabe of Comet Lovejoy (C/2011 W3) and the European Southern Observatory’s Very Large Telescope at Cerro Paranal, Chile (December 22, 2011). Credit: Gabriel Brammer.

Photo taken by Gabe of Comet Lovejoy (C/2011 W3) and the European Southern Observatory’s Very Large Telescope at Cerro Paranal, Chile (December 22, 2011). Credit: Gabriel Brammer.

 

Also see “Spotlight on Jennifer Mack, Research and Instrument Scientist,”
 Spotlight on Dan Coe, ESA/AURA Astronomer,” and Spotlight on Tricia Royle, Senior Program Coordinator.”

A Century Later, General Relativity is Still Making Waves

[Note: this article is cross-posted on the Hubble’s Universe Unfiltered blog.]

In November 1915, Albert Einstein published a series of papers that laid out the ideas, equations, and some astronomical applications of the general theory of relativity. While Isaac Newton described gravity as a force between two massive bodies, Einstein’s general relativity re-interprets gravity as a geometric distortion of space and time (see my previous blog post “Einstein’s Crazy Idea” ).

One example cited in those papers was that general relativity can explain the extra precession of Mercury’s orbit that Newton’s formulation does not explain. Another prediction, the bending of light as it passes a massive object, was tested and shown accurate less than four years later. This effect, called gravitational lensing has been shown in tremendous detail by the Hubble Space Telescope (see my previous blog post “Visual “Proof” of General Relativity“), and is one of the prime motivations behind the Frontier Fields project.

Last year, scientists celebrated the centennial of general relativity. The theory has been a resounding success in diverse astronomical situations. However, there was one major prediction that had not yet been tested: gravitational waves.

General relativity predicts that mass not only can create distortions in space-time, but also can create waves of those distortions propagating across space-time. In cosmology, the global expansion of space over time is a familiar concept. For a gravitational wave, space also stretches / shrinks, but that localized distortion moves across space at the speed of light.

Slide27.png

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is one of the projects designed to observe the minute distortions of gravitational waves. It consists of two detectors, one in Hanford, WA, and one in Livingston, LA. Each detector has two perpendicular arms, consisting of ultra-high-vacuum chambers four kilometers (two and a half miles) in length.

For the experiment, a laser light source is split and sent down and back each arm. By measuring how the laser light signals interfere with each other when recombined, extremely precise measurements of any change in distances can be made. The idea is that when a gravitational wave passes by, the minuscule stretch of one arm and shrink of the other will be observable.

Slide28

The signal observed in the LIGO event GW150914

On September 14, 2015, both LIGO detectors observed an event (see the accompanying image). The pattern in the signal indicates that a series of gravitational waves passed through the detectors in about two-tenths of a second. It is extremely important that multiple detectors saw the same event so that local disturbances can be ruled out. Plus, the time delay between the detectors helps measure the speed of the waves.

To analyze the event, the LIGO team used computer simulations. The shape and duration of the event waveform matched that expected for the merger of two black holes. The amplitude of the detection helped determine how far away the black-hole merger took place. The best fit is a merger of a 36-solar-mass black hole with a 29-solar-mass black hole to form a 62-solar-mass black hole, about 1.3 billion light-years away.

The energetics of the merger are simply astounding.Recognizing that 36 + 29 = 65, one can see that three solar masses of material did not end up in the resulting black hole. Instead, it was converted in the energy that created the gravitational wave. Released in less than half a second, the peak wattage of the event was greater than the visible light wattage from all the stars in the observable universe.

And yet, when detected on Earth, the measured space distortion was smaller than the size of a proton. The reason it took a century to find gravitational waves is because one has to measure subatomic displacements. Gravity is demonstrably the weakest of the four fundamental forces. It takes a tremendous amount of energy to produces a gravitational wave that can be seen at cosmic distances.

Slide31

There are several major results from this observation. The detection shows, for the first time, that both black-hole mergers and gravitational waves exist. The time delay between detectors, and analysis of the signal at different frequencies, demonstrates that gravitational waves travel at the speed of light. All the results are consistent with the predictions of general relativity.

This event marks the beginning of gravitational-wave astronomy. With more detectors coming online and planned improvements to current detectors, the field is burgeoning. Dozens to thousands of black-hole or neutron-star mergers, with more detail about each event, should be found in the next decade.

More than a billion years ago, two black holes merged in a distant galaxy, emitted a tremendous amount of energy, and created a gravitational ripple moving across space. Recently, the LIGO project detected this almost infinitesimal motion of space; a deviation much smaller than the size of an atom. With that amazing observation, the last major prediction of general relativity was verified. A century later, Einstein still rules.

Spotlight on Tricia Royle, Senior Program Coordinator

This occasional series focuses on members of the Frontier Fields team.  It highlights the individuals, their jobs, and the paths they took to get to where they are today.

Portrait of Tricia Royle

Tricia Royle, senior program coordinator, answers questions about her role on the Frontier Fields program and the path she took to get there.

What does a typical day on the job entail? What are your responsibilities?

When astronomers are granted time on Hubble, their program is assigned to a program coordinator to make sure the observations are feasible and schedulable on the telescope. When problems occur any time between acceptance and execution, it’s the program coordinator who helps get problems resolved. We act as liaisons between the various groups at the Space Telescope Science Institute (STScI) — science, operations, scheduling — and the observers — principal investigators and co-investigators. I tend toward the large-scale and long-term observations like Frontier Fields.

What specifically is your educational background?

I have a BSc in physics and astronomy from York University in Toronto, Ontario, Canada, and I have taken postgraduate courses in applied physics from Johns Hopkins University in Baltimore, Maryland.

What particularly interested you in school or growing up?  What were your favorite subjects?

I wasn’t particularly good at school in the early years and didn’t like the monotony of memorizing multiplication tables or writing out spelling words. In grade six, when the curriculum started to get interesting and turn more logic-based, I started to pay attention and actually enjoyed just about every class — except history, which still had too much memory work. In high school, it became clear that math and science were my favorites, though I still took a lot of English and arts courses because I enjoyed the creativity involved.

Tricia Royle poses with an astronaut at Kennedy Space Center.

Nineteen-year-old Tricia on her fifth or sixth trip to Kennedy Space Center in Florida. Tricia recalls, “It was pretty much the first place I asked to go every time I’d go to Florida. Eventually, my family just accepted it as higher priority than Disney World.”

How did you first become interested in space?

Growing up in a very rural area about an hour outside of Toronto, surrounded by farms and no streetlights, I had always been able to see the Milky Way, but I didn’t know much about what I was seeing. When I first read that our sun was a star and figured out that meant every star I was seeing was potentially someone else’s “sun,” it was pretty humbling. I wasn’t very old and I’m pretty sure I annoyed a lot of aunts and uncles with my new-found “discovery” that our sun is actually a star. I didn’t understand how they could talk about anything else if they knew how many suns there were in the sky! Weather and gas prices just didn’t seem important enough to warrant discussion when compared to my new sun/star revelation.

Was there someone or something that influenced you in developing a love for what you do, or the program you’re a part of? Was there a particular event that especially captured your imagination and led to life changes?

A lot of things happened when I was in my pre-teens and teenage years to push me toward space. I remember feeling intense sadness and disbelief after the Challenger disaster. I was in middle school, just starting to enjoy learning, and had a hard time dealing with the idea that a teacher who was supposed to go into space, then come back to share her experience with her classroom and other classrooms, now wasn’t coming back at all. I hadn’t realized before then how dangerous it was to launch a shuttle and couldn’t see past the loss of those seven astronauts to understand why anyone would take that risk.

A year or so later, Star Trek: The Next Generation came on TV, and it all started to make sense. I loved the scientific language and ideas in the show and the notion of “going where no one had gone before.” Traveling around on the Enterprise seemed like a dream come true, and I started to understand why someone would put everything at risk to go into space. Star Trek: The Next Generation was my first exposure to positive science fiction — not just doomsday aliens and robots — and it introduced me to the concept of just how much more might be out there and what might be possible. Hubble launched a few years after that, when I was in high school, and started sending back incredible images of real things that were actually out there, waiting to be found. It seemed to me that maybe a bit of the show was coming to life and I wanted to know more.

When it came time to choose a topic for my first high school term paper — it happened to be advanced chemistry — I decided it was a good excuse to find out more about all those suns/stars I had seen in the sky as a child, on Star Trek for the past four or five seasons and now coming down from Hubble. This seemed like a really good idea until my 10-page report was closer to 30 pages, and I still had several books to go through. Thankfully, I had a wonderful chemistry teacher who encouraged me to delve as deep as I wanted into the topic, but to choose something specific to keep the final paper under 15 pages so she could finish reading it in an evening. I chose to focus on the life cycle of stars, and that was the beginning of my intense curiosity about the science of space and the universe.

Tricia Royle posing at the sign at the entrance to Kennedy Space Center.

On a later trip, 21-year-old Tricia poses at the entrance to Kennedy Space Center.

How did you first get started in the space business?

The summer after my third year at York University, I worked with Dr. John Caldwell analyzing Hubble data on the low-mass stellar companions of larger stars. During that summer, he visited STScI and Johns Hopkins University to attend a conference and meet with his collaborators. I was invited to tag along. I imagine I looked a little — or a lot — lost and awkward standing among seasoned Hubble scientists and STScI employees in the auditorium after a talk. Fortunately, one of the Hubble data analysts took pity on me and invited me into her conversation. Lisa Frattare — now part of Hubble Heritage — became an instant friend and would later encourage me to apply to work at STScI after graduation.

I didn’t take her seriously, thinking there was no way a fresh-out-of-school job could be with something as huge as Hubble. But on a dare with one of my college roommates, we both applied for our unattainable dream jobs — I applied to STScI and he applied for a coaching job at the University of Hawaii. As luck would have it, I got an interview and came to work at STScI shortly after graduation as a program coordinator. Sadly, my roommate did not make it out to Hawaii.

Before I left York University, Dr. Caldwell described my new position at STScI as “the hot seat of astronomy,” which ended up being an understatement. Immediately after I started, I was working with and attending conferences with scientists I’d seen listed in textbooks. In my first two years, I had the opportunity to work with the Director of STScI — Robert Williams — and many others on the Hubble Deep Field to push the science limits of the telescope, and to join Lisa Frattare and Keith Noll on the Hubble Heritage Project to help make beautiful images from Hubble’s scientific data. I worked with Hubble Heritage for five years and still think it is one of those really great initiatives that highlights for everyone, not just scientists, what Hubble can do. All in all, not a bad start to a career in space.

What do you think of the Hubble results, or the impact that Hubble has on society? 

 I think people have started to take for granted the amazing images Hubble continues to allow scientists to take. It’s been up there for almost 26 years, which means there are a lot of kids and even adults who don’t know what it’s like to NOT have these observations sent down on a regular basis, or what it was like before Hubble helped solve some of the fundamental questions about the expansion of the universe and what is out there. I have two school-aged kids who just assume that Hubble has or will answer any question they may have about stars or galaxies. I don’t think it occurs to them that Hubble hasn’t always been and won’t always be around to do that.

The fact that it is such an ingrained part of the scientific and academic community says just how successful it has become. It’s like the Internet – it’s hard to remember what it was like before we had this way to find answers to our questions. I suspect Hubble’s archives and legacy programs will continue to provide answers, or trigger new questions, for a long time yet.

Is there a particular image or result that fascinates you?

The Ultra Deep Field, or UDF. I found out I was pregnant with my first child just after I started working as program coordinator for the UDF, and the UDF images were released while I was still in the hospital after delivering my daughter — so I will forever tie those two events together. But more than that, I still use the UDF image in my presentations, even though it is almost 12 years old, because it fascinates everyone who learns what they are really looking at. I ask people to look at that image and realize that what they are seeing aren’t individual stars, but galaxies. Then I ask them to keep in mind that this particular piece of sky was chosen because it was “boring,” and to further consider that everything they are seeing is contained within a patch of sky the size of the president’s eye on a dime, held at arm’s length. More than a few jaws drop at the implication. Seeing the UDF image triggers that realization in people, especially kids, of just how vast the universe must be easily makes the UDF my favorite.

Are there specific parts of the program that you’re especially proud to have contributed to?

I like the view from where I sit in Operations. I like watching a Hubble program develop from the initial science outline in the Phase 1, to a workable Phase 2, to a successfully executed set of observations. I especially love the large and multi-cycle programs — 47 Tuc, Hubble Deep Field, Ultra Deep Field, Andromeda, CANDELS, and now Frontier Fields. They allow me to work with people who have such a passion for what they do on these in-depth programs and challenge me to find new ways to get them the science they need.

Because repeat observers are assigned, when possible, to the same program coordinator each time they observe, that working relationship has a chance to grow cycle after cycle. Program coordinators tend to get very attached to the scientists they work with multiple times. I’ve been here since Cycle 6 and now we’re ramping up for Cycle 24, so the list of observers I claim as mine is pretty long, and I feel very protective of them and their observations, even if they’ve moved on to other program coordinators or even other telescopes.

What outside interests could you share that would help others understand you better?

A lot of what we do on Hubble can feel abstract and intangible, since we can’t actually go to the telescope or out in space to touch what we observe — so I like to do things that produce more tangible, immediate results. In addition to my love of reading and watching sci-fi TV shows, I do a lot of crafts to create something I can hold in my hand.

With most of my observers scattered around the country and internationally, I rarely see them in person. Giving talks about Hubble to schools and the more general public lets me connect the science to people. Being able to explain a Hubble image to someone without a science background and make it real for them, helps put into perspective that what I do at work on a daily basis can be inspiring and has results beyond the image itself. I want what we do at STScI and on Hubble to show people they can dream as big as they like because the universe is big enough to handle it.

Is there anything else that you think is important for readers to know about you?

I was one of only four female physics and astronomy majors in my first year at York University. Before classes even started, my academic advisor suggested that I might want to choose something easier than physics and astronomy, despite coming in with an A+ average in high school and scoring in the top 5 percent on the math assessment. Male classmates with B averages were not given the same suggestion to find an easier major.

In the years ahead, every test grade of mine that fell below an A – there weren’t many – brought up the question from others, and myself, as to whether I really should be there, whether I was good enough. It was a constant fight to prove to classmates, professors and myself that I deserved to major in physics and astronomy. It wasn’t enough that I wanted to be there and was passing my courses – I had to excel. Four of us started, but I was the only female graduate in physics and astronomy in my year.

I have a daughter and a son, still relatively young, but they’re starting to look at what they want to do when they finish school. Obviously I want them to do well, but my wish for both of them, and anyone else looking at what to do in their life, is that in whatever field they choose, they know that wanting to be there is enough and they don’t have to prove to anyone they deserve to follow their dreams.

 

Also see “Spotlight on Jennifer Mack, Research and Instrument Scientist
and “
Spotlight on Dan Coe, ESA/AURA Astronomer

Predicted Reappearance of Supernova Refsdal Confirmed

Hubble has captured an image of the first-ever predicted supernova explosion.

In November 2014, Hubble’s Frontier Fields program caught sight of a supernova called “Refsdal” while examining the MACS J1149.5+2223 galaxy cluster. Astronomers spotted four separate images of the supernova in a rare arrangement known as an “Einstein Cross” around a galaxy within the cluster.

The four images of the same supernova result from the way light from distant objects is not just magnified but bent by the immense mass of the galaxy cluster. (Link: https://frontierfields.org/2014/07/09/seeing-double-or-more-in-frontier-fields-images/)

Seeing such distant, gravitationally lensed objects is, of course, the point of the Frontier Fields project, but this one had a special quirk. By studying different models of just how mass is positioned in the galaxy cluster, astronomers could predict one more light path for Refsdal, one that would delay the light reaching the telescope until late 2015 or early 2016. This means they could predict when and where in the field the image of the supernova would appear next.

Astronomers began taking snapshots of the predicted area over an expected time period. And sure enough, on Dec. 11, 2015, the astronomers captured the reappearance of the supernova where they had anticipated it would be. The detection of this fifth appearance of the Refsdal supernova served as a unique opportunity for astronomers to test their models of how mass — especially that of mysterious dark matter — is distributed within this galaxy cluster, and they seem to be right on track.

hs-2015-46-a-web_print

These images show the search for the supernova, nicknamed Refsdal, using NASA’s Hubble Space Telescope. The image on the left is the galaxy cluster MACS J1149.5+2223 from the Frontier Fields program. The circle indicates the empty but predicted position of the newest appearance of the supernova. The image at top right shows observations taken by Hubble on Oct. 30, 2015, at the beginning of the observation program to detect the newest appearance of the supernova. The image on the lower right shows the discovery of the Refsdal supernova on Dec. 11, 2015, as predicted by several different models.

Credit: NASA, ESA, and P. Kelly (University of California, Berkeley)

Acknowledgment: NASA, ESA, and S. Rodney (University of South Carolina) and the FrontierSN team; T. Treu (UCLA), P. Kelly (UC Berkeley) and the GLASS team; J. Lotz (STScI) and the Frontier Fields team; M. Postman (STScI) and the CLASH team; and Z. Levay (STScI)

How Hubble “Sees” Gravity

[Note: this post is cross-posted on the Hubble’s Universe Unfiltered blog.]

Gravity is the familiar force of nature responsible for the diverse motions of a baseball thrown high into the air, a planet orbiting a star, or a star orbiting within a galaxy. Astronomers have long observed such motions and deduced the amount of gravity, and therefore the amount of matter, present in the planet, star, or galaxy. When taken to the extreme, gravity can also create some intriguing visual effects that are well suited to Hubble’s high-resolution observations.

Einstein’s general theory of relativity expresses how very large mass concentrations distort the space around them. Light passing through that distorted space is re-directed, and can produce a variety of interesting imagery. The bending of light by gravity is similar to the bending of light by a glass lens, hence we call this effect “gravitational lensing”.

einstein_cross_g2237_0305-hst-650x602

An “Einstein Cross” gravitational lens.

The simplest type of gravitational lensing is called “point source” lensing. There is a single concentration of matter at the center, such as the dense core of a galaxy. The light of a distant galaxy is re-directed around this core, often producing multiple images of the background galaxy (see the image above for an example). When the lensing approaches perfect symmetry, a complete or almost complete circle of light is produced, called an “Einstein ring”. Hubble observations have helped to greatly increase the number of Einstein rings known to astronomers.

a2218-hst-crop01-1280x768

Gravitational lensing in galaxy cluster Abell 2218

More complex gravitational lensing arises in observations of massive clusters of galaxies. While the distribution of matter in a galaxy cluster generally does have a center, it is never perfectly circularly symmetric and is usually significantly lumpy. Background galaxies are lensed by the cluster with their images often appearing as short thin “lensed arcs” around the outskirts of the cluster. Hubble’s images of galaxy clusters, such as Abell 2218 (above) and Abell 1689, showed the large number and detailed distribution of these lensed images throughout massive galaxy clusters.

These lensed images also act as probes of the matter distribution in the galaxy cluster. Astronomers can measure the motions of the galaxies within a cluster to determine the total amount of matter in the cluster. The result indicates that the most of the matter in a galaxy cluster is not in the visible galaxies, does not emit light, and is thus called “dark matter”. The distribution of lensed images reflects the distribution of all matter, both visible and dark. Hence, Hubble’s images of gravitational lensing have been used to create maps of dark matter in galaxy clusters.

In turn, a map of the matter in a galaxy cluster helps provide better understanding and analysis of the gravitational lensed images. A model of the matter distribution can help identify multiple images of the same galaxy or be used to predict where the most distant galaxies are likely to appear in a galaxy cluster image. Astronomers work back and forth between the gravitational lenses and the cluster matter distribution to improve our understanding of both.

macs_j0647_jd123-hst-montage-1100x805

Three lensed images of a distant galaxy seen through a cluster of galaxies.

On top of it all, gravitational lenses extend Hubble’s view deeper into the universe. Very distant galaxies are very faint. Gravitational lensing not only distorts the image of a background galaxy, it can also amplify its light. Looking through a lensing galaxy cluster, Hubble can see fainter and more distant galaxies than otherwise possible. The Frontier Fields project has examined multiple galaxy clusters, measured their lensing and matter distribution, and identified a collection of these most distant galaxies.

While the effects of normal gravity are measurable in the motions of objects, the effects of extreme gravity are visible in images of gravitational lensing. The diverse lensed images of crosses, rings, arcs, and more are both intriguing and informative. Gravitational lensing probes the distribution of matter in galaxies and clusters of galaxies, as well as enables observations of the distant universe. Hubble’s data will also provide a basis and guide for the future James Webb Space Telescope, whose infrared observations will push yet farther into the cosmos.

sdss_j1038+4849_smiley-hst-crop-500x420

A “smiley face” gravitational lens in a galaxy cluster.

The distorted imagery of gravitational lensing often is likened to the distorted reflections of funhouse mirrors, but don’t take that comparison too far. Hubble’s images of gravitational lensing provide a wide range of serious science.

‘Hubble’s Views of the Deep Universe’ – Public Lecture

On November 3, 2015, I gave a presentation called “Hubble’s Views of the Deep Universe”.  This presentation was to commemorate some of Hubble’s most influential observing campaigns during this 25th anniversary year.  Of course, I could not get to all of Hubble’s programs that observed the deep universe in just an hour.  For additional information, check out the science articles on the Hubble 25th website and, of course, keep checking back to this blog.

Dr. Brandon Lawton
“Hubble’s Views of the Deep Universe”

November 3, 2015

For two decades, the Hubble Space Telescope has pioneered the exploration of the distant universe with images known as the “deep fields”. These deep fields have given astronomers unprecedented access to understanding how galaxies form and develop over billions of years in the history of our universe, from shortly after the Big Bang to today. Join us for a retrospective view of Hubble’s contributions to the investigation of the deep reaches of the cosmos and some fresh glimpses of what Hubble is currently doing to further our understanding of the most distant parts of the universe.

This lecture is part of the monthly public lecture series at the Space Telescope Science Institute in Baltimore, Maryland. Each month addresses a different cosmic topic, usually related to Hubble, but always venturing to some fascinating part of the universe. For more information, check out the web page on HubbleSite:
http://hubblesite.org/about_us/public_talks/

Spotlight on Dan Coe, ESA/AURA Astronomer

This occasional series focuses on members of the Frontier Fields team.  It highlights the individuals, their jobs, and the paths they took to get to where they are today.

Dan Coe, ESA/AURA Astronomer, in front of the first Frontier Fields image, Abell 2744.

Dan Coe, ESA/AURA Astronomer, in front of the first Frontier Fields image, Abell 2744.

What is your position? What are your responsibilities?

I am an ESA/AURA astronomer at the Space Telescope Science Institute (STScI) in Baltimore. I use gravitational lensing to search for distant galaxies in Hubble and Spitzer Space Telescope images. I am the gravitational lens model coordinator for the Frontier Fields program. I also work to support astronomers’ use of Hubble’s Advanced Camera for Surveys and the Near-Infrared Camera on the upcoming James Webb Space Telescope.

How did you get involved with the Frontier Fields program?

In 2012, working on the Cluster Lensing And Supernova survey with Hubble (CLASH), I discovered a candidate for the most distant galaxy yet known, MACS0647-JD. Its light took about 13.4 billion years to get here, so we see it as it was long ago. We are looking 97 percent of the way back to the Big Bang. Back then, galaxies were much smaller, just 1 percent the size of our Milky Way, and had yet to form grand spiral structures.

MACS0647-JD is more distant than any of the galaxies discovered in the Hubble Ultra Deep Field (UDF), even though Hubble stared at the UDF for much longer: a week vs. four hours for the infrared images. This demonstrates the power of gravitational lensing. Galaxy clusters enable us to see fainter light from galaxies in the distant universe.

Gravitational lensing had been used often by astronomers, but its power had yet to be fully exploited. No one had taken ultra-deep images of a galaxy cluster with Hubble or Spitzer. I advocated for this to a committee convened by former STScI Director Matt Mountain. And now it has become a reality in the Frontier Fields program led by Jennifer Lotz. The ultra-deep images of galaxy clusters are revealing the faintest galaxies ever studied, magnified by gravitational lensing.

How do astronomers study gravitationally lensed galaxies?

The distant galaxies in these images are most typically magnified by factors of between 2 and 10. To properly study these galaxies, we need estimates of their magnifications from gravitational lens modeling. By studying the observed deflections and distortions of background galaxies, astronomers build up a model of each galaxy cluster’s mass distribution (primarily dark matter) and the resulting lensing magnifications.

For the Frontier Fields, five groups of astronomers from around the world collaborated to gather the best possible data on all six clusters and produce gravitational lensing models. I coordinated these efforts and processed their model submissions for all astronomers to use. This lens modeling work is unprecedented both for its collaborative nature and the accessibility that all astronomers now have to the magnification estimates. With deep Frontier Fields imaging now in hand, astronomers are able to study the lensing in much more detail and are producing the best dark matter maps and lensing models ever.

Are there specific parts of the program that you’re proud to have contributed to?

I helped Jennifer Lotz select the six Frontier Fields clusters—with a lot of input from other astronomers. I had hoped my babies would do well! So far they have, and I am proud.

Left: Frontier Fields Hubble image of Pandora's Cluster, Abell 2744. Right: Lensing magnifications (color) and distortions (swirls) of distant galaxies according to one model produced by Johan Richard and the

Left: Frontier Fields Hubble image of Pandora’s Cluster, Abell 2744. Right: Lensing magnifications (color) and distortions (swirls) of distant galaxies according to one model produced by Johan Richard and the “CATS” (Clusters As Telescopes) team.

How did you first become interested in space?

Mom was a space geek, as she tells it. She can still name the Mercury Seven [NASA’s first astronaut class]. She drew celestial bodies on the ceiling above my crib and hung a poster of Van Gogh’s “Starry Night” on my wall. She sat me on her lap to watch Carl Sagan’s “Cosmos” and to read the companion book. She took me outside to enjoy eclipses and meteor showers. And she held me in her arms and cried on my head as we watched the first Shuttle launch. I remember always being awestruck by the immensity of the universe. And I knew I wanted to work on everything.

This picture of Dan and his mom was taken when the future astronomer was just 5 months old.

This picture of Dan and his mom was taken when the future astronomer was just 5 months old.

What specifically is your educational background?

I went to Browne Academy elementary school, Thomas Jefferson High School for Science and Technology, Cornell University for my B.S. in Applied & Engineering Physics—with a concentration in astrophysics—and Johns Hopkins University, right across the street from STScI, for my Ph.D. in astronomy.

What particularly interested you in school or growing up? What were your favorite subjects?

Growing up, I loved math, puzzles, games, and eventually computer programming. The latter proved especially useful for my career since we write many programs to analyze our Hubble images and other data.

“What about poetry?” Mom would ask. She and my father had studied art, literature, and history. As a smart-aleck kid, I insisted all of that could be explained by mathematics. But as I grew up, I grew to appreciate the poetry in Carl Sagan’s explanations of our universe. I became more curious about all of the physical and personal forces that brought us to where we are and take us where we are going. And all of this, in time to meet my partner Kate Welch, a Shakespeare scholar, who gives me a deeper appreciation for both poetry and history. Turns out I should have listened to my mother all along!

How did you first get started in the space business?

I followed Carl Sagan to Cornell, but unfortunately I never got to meet him. He was too sick to teach my freshman year. During my senior year, astronomers announced new supernova results suggesting the existence of dark energy. Carl Sagan had taught us we are all made of star stuff. But then we learned that the universe is mostly made of something very different: dark matter and dark energy. Astronomy had humbled humanity yet again. I think I always planned to go to grad school for astronomy, but those exciting results really sealed it for me.

Once in grad school at Johns Hopkins, my advisor Narciso Benitez started me working on mapping dark matter in galaxy clusters by modeling gravitational lensing, and measuring distances to galaxies in new Hubble ACS images, including the UDF. He was a constant source of inspiration as I tackled tough analysis problems. I followed him to Granada, Spain, where I finished my Johns Hopkins Ph.D.

After three years at NASA’s Jet Propulsion Laboratory and Caltech in Pasadena, I am now back in Baltimore at STScI. My colleagues and I here are fortunate to work with Adam Riess, one of the Nobel Prize winners from that inspiring dark energy discovery in 1998.

What do you think of the Hubble results, or the impact that Hubble has on society?

I am proud to be contributing a small part to Hubble’s great legacy. In addition to my Frontier Fields work, I am leading a large new Hubble program called RELICS to observe 41 more lensing galaxy clusters. Complementary to the Frontier Fields, RELICS is casting a broader net with shallower imaging. Our goal is to find the best and brightest distant galaxy candidates for more detailed study with current telescopes and with the James Webb Space Telescope.

Hubble has filled us with wonder and taken us back in time, almost all the way back to the Big Bang. By flipping through Hubble’s scrapbook, we can relive 97 percent of the history of the universe. James Webb will tell the tale of our cosmic origins in the first galaxies.

I can’t say I really comprehend the immensity of the universe any more than I did as a child. But I have appreciated new details, and I remain awestruck. The universe teaches us to be humble yet proud, and most of all, I think, grateful. Humble, as an insignificant speck in the vast cosmos. Proud that we have come so far and can begin to comprehend it. And grateful that we have the privilege to witness and explore so much of it.

Is there a particular image or result that fascinates you?

We named one of our cats after the Carina Nebula. The Hubble + CTIO Blanco color image of this stellar nursery is a masterpiece—the most beautiful astronomy image I’ve seen. Our other cat is named Maggie, after Queen Margaret in Shakespeare’s Henry VI; she has a “tiger’s hide.”

Dan calls picture of the Carina Nebula

Dan calls this picture of the Carina Nebula “the most beautiful astronomy image I’ve seen.” This 50-light-year-wide view of the nebula’s central region shows a maelstrom of star birth and death. The mosaic was assembled from 48 frames taken with Hubble’s Advanced Camera for Surveys, with information added from the Cerro Tololo Inter-American Observatory in Chile.

What outside interests—e.g., hobbies, service, dreams, activities—could you share that would help others understand you better?

When I was around 10, my father and I started playing duplicate bridge at a local club on Saturdays. Many of the other partnerships would argue with one another over their play, but not us. Dad and I did our best, celebrated our good plays, and learned from our mistakes, but never got angry with one another. My parents’ unwavering support, pride, encouragement, and engagement of my curiosity have made me the astronomer I am today. I do my best to keep making them proud.

Dan, at the age of 11, poses with his mom and dad.

Dan, at the age of 11, poses with his dad and mom.

Is there anything else that you think is important for readers to know about you?

I feel very fortunate to be paid to do what I love. And I have been privileged. Like many others at STScI, I work hard and try to give back in small part by sharing the rich history of our universe with others in Baltimore and with people around the world. I hope you enjoy hearing our stories.

Also see “Spotlight on Jennifer Mack, Research and Instrument Scientist.”

New Interactive Explorer for Galaxy Cluster Abell 2744

The high-resolution images taken by the Hubble Space Telescope for the Frontier Fields survey have yielded a treasure trove of insights into very distant galaxy clusters.  In addition to providing astronomers with unparalleled views of galaxies that Hubble would not otherwise be able to see, the high-resolution images are providing views of distant corners of the universe that are similar to the famous Hubble Deep Fields.

To give you some idea of just how detailed and rich the Frontier Field images are, an astronomer at the Space Telescope Science Institute has created this interactive viewer to explore them yourself:

Click here to explore the Abell 2744 yourself:

Abell 2744 Viewer

To help you use and navigate the viewer, we’ve created a short video to help familiarize you with the interface and controls.  Over time, we’ll be adding more of the Frontier Fields clusters, so be sure to check back for updates.

Astronomers Gather from Around the World

From August 3-14, thousands of astronomers from around the world gathered in Honolulu, Hawaii, to discuss the latest astronomical discoveries at the International Astronomical Union (IAU) General Assembly. The Frontier Fields had a highly visible role during this two-week meeting, including a fascinating three-day focus meeting where all things Frontier Fields were discussed, including recent science results and the future of the Frontier Fields. In this post, I will highlight just a few of the Frontier Fields highlights at the IAU General Assembly.

 

The Frontier Fields was highlighted with a 3-day focus meeting at the International Astronomical Union general assembly meeting in Honolulu, Hawaii.

The Frontier Fields was highlighted with a three-day focus meeting at the International Astronomical Union General Assembly meeting in Honolulu, Hawaii. The focus meeting was kicked off with a great introductory talk by Dr. Jennifer Lotz (Principal Investigator of the Hubble Frontier Fields program).

A Wealth of Science

The Frontier Fields focus meeting covered much of the latest and greatest science results coming from the Frontier Fields program. Some of the new results included deeper understandings of galaxies in the distant universe, more complete pictures of the massive galaxy clusters, and the searches for exploding massive stars, called supernovae. Some big points of discussion at the focus meeting included the methods by which astronomers obtained and studied the Frontier Fields data. These methods included the analysis of the images and spectra as well as the development of physics-based models of gravitational lensing around the Frontier Fields galaxy clusters. The modeling efforts continue to be incredibly important because they tie our physics-based understanding of how gravitational lensing works with the observations of gravitational lensing, and they allow astronomers to accurately search for and study extremely distant and lensed galaxies.

We will highlight some of the new results in future blog posts.

As for the Hubble Frontier Fields, it was nice to see the progress on the observing campaign. Hubble is two-thirds of the way through its Frontier Fields observing campaign, having completed observations of four out of the six massive galaxy clusters and their four associated parallel fields. The completed Hubble Frontier Fields images are shown below.

Shown on the left is the galaxy cluster Abell 2744. Shown on the right is the adjacent parallel field.

Shown on the left is the galaxy cluster Abell 2744. Shown on the right is the adjacent parallel field. This was the first completed pair of targets in the Hubble Frontier Fields program.
Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

 

Shown on the left is the galaxy cluster MACS J0416. Shown on the right is the adjacent parallel field. These were the second completed targets of the Hubble Frontier Fields program.

Shown on the left is the galaxy cluster MACS J0416. Shown on the right is the adjacent parallel field. This was the second pair of completed targets in the Hubble Frontier Fields program.
Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

 

Shown on the left is the galaxy cluster MACS J0717. Shown on the right is the adjacent parallel field. These were the third pair of completed targets of the Hubble Frontier Fields program. This marked the halfway point of the Hubble Frontier Fields observing campaign and were completed in the Spring of 2015, around the 25th anniversary of the Hubble Space Telescope.

Shown on the left is the galaxy cluster MACS J0717. Shown on the right is the adjacent parallel field. This was the third pair of completed targets in the Hubble Frontier Fields program. This marked the halfway point of the Hubble Frontier Fields observing campaign. The MACS J0717 observations were completed in the spring of 2015, around the 25th anniversary of the Hubble Space Telescope.
Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

 

Shown on the left is the galaxy cluster MACS J1149. Shown on the right is the adjacent parallel field. These were the fourth pair of completed targets of the Hubble Frontier Fields program.

Shown on the left is the galaxy cluster MACS J1149. Shown on the right is the adjacent parallel field. This was the fourth pair of completed targets in the Hubble Frontier Fields program.
Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

A Truly Multi-Mission Effort

Perhaps the most exciting aspect of the Frontier Fields focus meeting at the IAU was hearing from the multitude of ground- and space-based missions investigating the Frontier Fields. These observatories cover a wide range of the electromagnetic spectrum, from high-energy X-rays to low-energy radio waves. Scientific results were mentioned during this focus meeting from data obtained by the Hubble Space Telescope, the Chandra X-ray Observatory, the Jansky Very Large Array, the Very Large Telescope, the Atacama Large Millimeter/submillimeter Array, the Keck Observatory, the James Clerk Maxwell Telescope, the Herschel Space Observatory, and others. There was also a discussion of how the future James Webb Space Telescope will help us understand the cosmic frontier probed by the Frontier Fields.

With so many telescopes staring at these 12 patches of the sky, a wealth of data is being accumulated and studied that will keep astronomers busy for years to come. We truly expect the science from the Frontier Fields to redefine our understanding of massive galaxy clusters and the distant universe.

Sharing the Story

The Frontier Fields were highlighted in many other venues at the IAU meeting, not just during the Frontier Fields focus meeting. The Frontier Fields were a part of a Hubble 25th anniversary image gallery exhibit in the main concourse area of the convention center. A presentation was given to the astronomy education and outreach community about how the Frontier Fields are being incorporated into education and outreach products by the Office of Public Outreach at the Space Telescope Science Institute. Frontier Fields materials were available at the official NASA exhibit during the IAU meeting.

Perhaps the most stunning display of the Frontier Fields occurred at NASA’s hyperwall. The hyperwall is a high-definition video wall that provides a large and clear view of astronomical images and visualizations. Dr. Rachael Livermore (University of Texas, Austin) gave a visually stunning tour through Hubble’s Frontier Fields, including visualizations that highlighted the effects of gravitational lensing. Dr. Christine Jones (Harvard-Smithsonian Center for Astrophysics) gave a truly spectacular multiwavelength, multi-mission view of the Frontier Fields that included data from the Hubble Space Telescope, the Chandra X-ray Observatory, and the Jansky Very Large Array.

NASA’s hyperwall is always a big draw at professional astronomy meetings, public outreach events, and informal education venues. I highly encourage you to attend a hyperwall talk if you happen to be in the neighborhood of an event that has the NASA hyperwall.  You can follow NASA’s hyperwall on Twitter – @NASAHyperwall .

 

The Frontier Fields were featured, in high-definition, on NASA's Hyperwall. Top - Rachael Livermore presents the current status of Hubble's Frontier Fields. Bottom - Christine Jones-Forman presents a multiwavelength view of the Frontier Fields.

Images from the Frontier Fields were featured, in high definition, on NASA’s hyperwall. Top: Dr. Rachael Livermore presents the current status of Hubble’s Frontier Fields. Bottom: Dr. Christine Jones presents a multiwavelength view of the Frontier Fields.