The Hunt for Jellyfish Galaxies in the Frontier Fields

Jellyfish galaxies, exotic galaxies with “tentacles” made of stars and gas, appear as though they are swimming through space. So far, astronomers studying the Frontier Fields have found several of these strange galaxies, and they are currently combing through the mountains of data to find even more.

Sometimes also known as “parachute galaxies” or “comet galaxies,” jellyfish galaxies form when spiral galaxies collide with galaxy clusters. When the cold gas from an approaching spiral hits the hot gas from a galaxy cluster, the stars continue on, but the collision blasts the cold gas out of the galaxy in trailing tails, or “tentacles.” Bursts of stars form in these streamers, sparked by the shock of cold gas hitting hot gas. The tentacles, with their knots of newborn stars, trace the path of the colliding, compressed gas. Eventually, these jellyfish galaxies are thought to settle into elliptical galaxies.

Three examples of jellyfish galaxies in the Frontier Fields. In each image, the telltale, trailing “tentacles” of stars and gas are present. The left and right galaxies are from galaxy cluster Abell 2744. The middle galaxy resides in galaxy cluster Abell S1063.

Some examples of jellyfish galaxies in the Frontier Fields. In each image, note the telltale, trailing “tentacles” of stars and gas. The left and right galaxies are from galaxy cluster Abell 2744. The middle galaxy resides in galaxy cluster Abell S1063.

Jellyfish galaxies are sometimes also seen in less massive groups of galaxies. Their characteristic shape is, however, usually much more pronounced for spirals falling into massive galaxy clusters, because the gas they encounter there is denser, and because they move faster due to the stronger gravitational pull of the cluster. The higher speed results in a more energetic collision that, in turn, increases the pressure that strips the infalling galaxy of its cold gas and triggers widespread star formation.

Astronomers have studied similar interactions in detail in nearby galaxy clusters but do not fully understand the much more violent process that creates jellyfish galaxies in very massive clusters. If the cold galactic gas is stripped very quickly these collisions could be the primary way by which spiral galaxies are transformed into ellipticals. Unfortunately, because the phenomenon is over so quickly, it is very difficult to observe. One expert on jellyfish galaxies—Dr. Harald Ebeling of the Institute for Astronomy at the University of Hawaii—explains that this is why astronomers are looking at extremely massive clusters, such as those in the Frontier Fields, in their search for a large sample of these galaxies.

Aside from helping to explain why elliptical galaxies are so common in the universe, jellyfish galaxies capture the process of galaxy/gas collisions in action. Their trailing, star-forming tentacles may also explain the presence of “orphan” stars that do not belong to any galaxy.

The work to uncover the secrets of the Frontier Fields goes on. Stay tuned for more exciting news on jellyfish galaxies and other oddities as scientists continue to study the vast amount of data collected in the Frontier Fields.

The Whirlpool Galaxy Seen Through a Cosmic Lens

The Frontier Fields images, while beautiful, aren’t all that easy to comprehend to eyes outside the astronomy community. Look at them and you see streaks of light and blurry smudges mixed into a field of obvious galaxies. It can be difficult to interpret the distortions that occur as light from distant galaxies becomes magnified and bent by the vast mass of the Frontier Fields’ galactic clusters.

So here’s an interesting thought experiment. What if we could take a well-known galaxy and put it behind one of our Frontier Fields galaxy clusters? What would that look like?

Thanks to Dr. Rachael Livermore of the University of Texas at Austin and Dr. Frank Summers of the Space Telescope Science Institute, you can see for yourself. In this video simulation, the Whirlpool Galaxy, also known as M51, sweeps behind the Frontier Fields galaxy cluster Abell 2744. As it moves, the gravity of the galaxy cluster distorts the light of the Whirlpool, warping and magnifying and even multiplying its image.

Obviously, this isn’t a realistic video — galaxies don’t just take jaunts through the cosmos. But it illustrates how our image of the Whirlpool would change depending on where it was placed behind the galaxy cluster. Livermore used the Whirlpool Galaxy for this video because it’s a well-known, popular Hubble image, easily recognizable through the distortions that happen at different locations in the lensing cluster.

Take a look. After the intro, the image on the left of the dotted line shows the location of the Whirlpool behind the cluster, while the image on the right shows the lensing distortion underway.

In this simulation, we’ve moved the Whirlpool to a distance astronomers refer to as redshift 2. That far back, it would be so distant that the light we’re seeing from it would have started traveling away from the galaxy when the universe was just a quarter of its current age. If the Whirlpool were that far away in real life, its light would take 10 billion years to reach Earth.

Note that this isn’t how the Whirlpool would really appear at that distance. At such a distance, all we would be able to make out is the vivid central bulge of stars. But for the purpose of this illustration, the whole galaxy has been kept artificially bright.

The most impressive distortions occur as the Whirlpool passes behind the center of the galaxy cluster, with multiple, stretched, distorted images of the galaxy appearing. At this point, the light of the Whirlpool beaming toward Earth bends to go around the cluster, but can go either left or right. There’s no preference, so some of it goes one way, and some goes another, and we get many images of the same galaxy.

This location is ideal for astronomers, because as you can see in this illustration, the images become both stretched and magnified, allowing the galaxy structure to be seen in greater detail. Furthermore, because a gravitational lens acts much as a telescope lens, more light is focused our way, making the galaxies brighter.

This, Livermore notes, is a primary reason why astronomers are interested in these galaxy clusters – the chance to see the distant background galaxies in so much greater detail than Hubble would be able to produce on its own.

 

 

 

 

 

Spotlight on Jennifer Mack, Research and Instrument Scientist

This occasional series focuses on members of the Frontier Fields team.  It highlights the individuals, their jobs, and the paths they took to get to where they are today.   

This is a picture of Jennifer Mack, a Hubble Research and Instrument Scientist.

Jennifer Mack, a Hubble Research and Instrument Scientist, answers questions about her role on the Frontier Fields project.

What is your position?

My formal title is Research & Instrument Scientist in Hubble Space Telescope’s Instruments Division. I help manage the Frontier Fields data pipeline, which delivers the best possible calibrated data products to the astronomical community. I am also part of the WFC3 [Wide Field Camera 3] Instrument team where I work on calibration of the UVIS [ultraviolet and visible light] and IR [infrared light] detectors.

What is a “data pipeline” and what does it mean to “calibrate”?

A data pipeline is a set of software for processing and combining sets of images. It includes tools to correct for instrument artifacts, such as bad pixels, thermal signal from the detectors, and variations in sensitivity across the field of view. The goal of calibration is to tie the brightness of objects measured in Hubble’s cameras to some absolute system, based on measurements of stars of known brightness.

What does a typical day on the job entail? What are your responsibilities?

The data pipeline team keeps an eye on the Frontier Fields images as they are arriving from the telescope. For a given cluster, these come in a steady stream over a period of about 6 weeks, so we have to keep on top of things. First and foremost we need to be sure that the telescope was pointing in the right place and that it was stable throughout the exposure.

We also develop software to correct the images for artifacts that aren’t automatically handled by Hubble’s standard calibration pipeline. This includes masking out artifacts like satellite trails or scattered light from bright stars. We also mask IR ‘persistence’ which is leftover signal from very bright objects in observations taken just prior to ours. For the IR detector, we correct the images for stray light, usually from the bright Earth, that varies with time over the course of an exposure. For the ACS [Advanced Camera for Surveys] detector, we correct for artifacts like hot pixels and charge transfer losses during readout, both of which are considerable after being in space for 13 years.

Once that is complete, we correct the images for distortion and align them. These are then stacked together to create full-depth mosaics for each filter using specialized software called AstroDrizzle which allows us to optimize the resolution of the final images.

What specifically is your background?

I have a BS in physics and an MS in astrophysics. I’ve been at Space Telescope since 1996, and over the years have helped calibrate Hubble’s main imaging cameras: WFPC2 [Wide-Field Planetary Camera 2], ACS, and now WFC3.

What particularly interested you in school or growing up?  What were your favorite subjects?

I was particularly interested in science and math in high school. I remember in physics class we had to predict the landing spot of a marble rolled down an inclined plane and off of the side of a table. Measuring only the height of the incline, the height of the table, and the time the marble was in the air, we were able to calculate where on the floor the marble would land and then put a paper cup there to catch it. I was amazed that this actually worked and was struck by the power of mathematics to predict events which seemed like magic to me.

How did you first become interested in space?

My birthday coincides with the peak of the Perseid meteor shower. This is a particularly spectacular event in southwest Colorado where I grew up, and when I was little I asked my mom if the meteors were special for my birthday. She cleverly told me that they must be, and that felt very magical to me. When I got older, friends and I would hike to the top of a mountain and lay back to get a full view of the night sky. As the meteors streaked across the sky, we would imagine that we were clinging to the side of the Earth, spinning at 1000 miles/hour, and trying not float away into space. Growing up under really dark skies really sparked my curiosity about space and made me think about all the mysteries still undiscovered.

Was there someone (parent, teacher, spouse, sibling, etc.) or something (book, TV show, lecture etc.) that influenced you in developing a love for what you do, or the program you’re a part of?

When I was young, I asked a lot of questions and especially wanted to understand how and why things worked. My parents never said “I don’t know,” but took the time to show me how to find answers, either in books or on the computer. We watched a lot of nature documentaries together, including the original Cosmos series which resulted in a lot of interesting discussions. My parents really listened to my questions and as a result instilled in me a general curiosity and love of learning.

Is there a particular image or result that especially fascinates you?

I’ve always been fascinated by galaxy clusters, and the Frontier Fields images are pushing the limits of HST’s instruments to the extreme. By combining very deep exposures with the power of a gravitational lens, we are able to look back even further in time to view galaxies when the Universe was only 500 million years old. When you create very deep images like these, limitations in the current instrument calibration become apparent. We are developing new techniques to do cutting-edge calibration and sharing these new methods with the user community in the hope of allowing for the best possible science with HST. It’s exciting to be a part of all this new discovery!

Are there specific parts of the program that you’re particularly proud to have contributed to?

In addition to my Frontier Fields work, I’m proud to be a member of the Hubble Heritage Team, which produces some of the most iconic astronomy images ever. These images are designed specifically for the purpose of inspiring people, and I think that is an especially worthy pursuit! My specialty is in understanding Hubble’s instruments, and I work on designing the observations and also in calibrating and aligning the images once they have been acquired. Some recent mosaics I’ve had the pleasure of working on include hits like the Eagle Nebula, Westerlund 2, the Monkey Head Nebula, and the Horsehead Nebula.

Is there anything else that you think is important for readers to know about you?

I have a 5-year-old son who loves space and especially playing Lego “Hubble Rescue” to reenact the servicing missions. One of his more memorable quotes: “Hey mom, how about this time I be Mike Massimino and you be John Grunsfeld!” Being able to share my passion for astronomy with my son has been especially rewarding. [Editor’s note: Mike Massimino performed spacewalks on two Hubble servicing missions, and John Grunsfeld is a spacewalking veteran of three Hubble servicing missions.]

This picture shows Jennifer Mack enjoying time  with her son in a field in Colorado.

Jennifer Mack enjoying time in Colorado with her son.

 For more information on the processing of Hubble images, please see these posts:

For more information on how Hubble images are proposed, planned, and scheduled, please see these posts:

Galaxy Shapes in the Frontier Fields Observations

We can learn a lot about galaxies by analyzing their light, through computer modeling, and using other complex techniques. But at the most basic level, we can learn about galaxies by studying their shapes.

Galaxy appearance immediately reveals certain characteristics. Elliptical galaxies contain a wealth of old stars. Spiral galaxies are full of gas and dust. Distorted galaxies have likely experienced a gravitational interaction with another galaxy that warped their structure.

The Mice, as these colliding galaxies are called, are a pair of spiral galaxies seen about 160 million years after their closest encounter. Gravity has drawn stars and gas out of the galaxies into long tails.  Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

The Mice, as these distorted colliding galaxies are called, are a pair of spiral galaxies seen about 160 million years after their closest encounter. Gravity has drawn stars and gas out of the galaxies into long tails. Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

The Frontier Fields project adds another dimension to this simple analysis. When we look at extremely distant galaxies with the magnification of gravitational lensing, we see new detail that was previously obscured by distance. Their shapes are clues to what occurred within those galaxies when they were very young.

Galaxies viewed through the gravitational lenses of the Frontier Fields clusters can be seen at a resolution 10 times greater than non-lensed galaxies. That means those tiny red dots that so thrill astronomers in normal Hubble images actually have some structure in Frontier Fields imagery.

Previous studies, such as the Hubble Ultra Deep Field, The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, or even adaptive optics-enhanced studies by ground telescopes have shown that young, star-forming galaxies at about a redshift of 2 (existing when the universe was about 3.3 billion years old) appear to have a certain lumpiness. But without gravitational lensing, we lack the resolution to say for sure whether those lumps were massive clusters of newly forming stars, or whether some other factor was causing those galaxies to have a clumpy appearance.

Frontier Fields has revealed that yes, many of those galaxies have star-forming knots that really are quite large, implying that star formation occurred in a very different way in the early universe, perhaps involving greater quantities of gas in those young galaxies than previously expected.

Frontier Fields has also given us a better grasp of the physical size of gravitationally lensed young galaxies even farther away, at a redshift of 9 (when the universe was around 500 million years old). Observations show that these galaxies are actually quite small – perhaps 200 parsecs across, while a typical galaxy you see today is closer to 10,000 parsecs across. These observations help plan future observations with the Webb Space Telescope, picking out what will hopefully be the best targets for study.

This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The Frontier Fields project is collecting galaxies from the earliest epochs of the universe to add to such comparisons. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team

This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The Frontier Fields project is collecting galaxies from the earliest epochs of the universe to add to such comparisons. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team

Galaxy shape also plays a role in discoveries in the Frontier Fields’ six parallel fields, which are unaffected by gravitational lensing but provide a view into space almost as deep as Hubble’s famous Ultra Deep Field, with three times the area.

It’s well known that galaxies collide and interact, drawn to one another by gravity. Most galaxies in the universe are thought to have gone through the merger process in the early universe, but the importance of this process is an open question. The transitional period during which galaxies are interacting and merging is relatively short, making it difficult to capture. A distant galaxy may appear clumpy and distorted, but is its appearance due to a merger – or is it just a clumpy galaxy?

Collision-related features — such as tails of stars and gas drawn out into space by gravity, or shells around elliptical galaxies that occur when stars get locked into certain orbits – are excellent indicators of merging galaxies but are hard to detect in distant galaxies with ordinary observations. Frontier Fields’ parallel fields are providing astronomers with a collection of faraway galaxies with these collision-related features, allowing astronomers to learn more about how these mergers affected the galaxies we see today.

As time goes on and the cluster and parallel Frontier Fields are explored in depth by astronomers, we expect to to learn much more about how galaxy evolution and galaxy shapes intertwine. New results are on the way.

Celebrating Hubble’s 25th Anniversary

In April, Hubble will celebrate a quarter-century in space. The telescope, launched into orbit in 1990, has become one of NASA’s most beloved and successful missions, its images changing our understanding of the universe and taking root in our cultural landscape. Hubble pictures have not only expanded our scientific knowledge, they have altered the way we imagine the cosmos to appear.

pillars 1

Hubble took its iconic “Pillars of Creation” image of these star-forming clouds of gas and dust in the Eagle Nebula in 1995. Credit: NASA, ESA, STScI, J. Hester and P. Scowen (Arizona State University)

Hubble’s prolonged success has been a testament to its innovative design, which allowed it to be periodically updated by astronauts with new equipment and improved cameras. Hubble  has been able, to an extent, to keep up with technological changes over the past 25 years. The benefits are evident when comparing the images of the past and present.

pillars 2

This new image of the Eagle Nebula’s “Pillars of Creation” was taken in 2014 to launch Hubble’s year-long celebration of its 25th anniversary. The image was captured with Wide Field Camera 3, an instrument installed on the telescope in 2009. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Hubble’s new instruments — specifically, the near-infrared capabilities of Wide Field Camera 3 — are what makes the Frontier Fields project possible. The faint infrared light of the most distant, gravitationally lensed galaxies sought in the Frontier Fields project would be beyond the reach of Hubble’s earlier cameras. Frontier Fields highlights Hubble’s continuing quest to blaze new trails in astronomy — and pave the path for the upcoming Webb Space Telescope — so it makes sense that its imagery is included in a collection of 25 of Hubble’s significant images, specially selected for the anniversary year.

The immense gravity in this foreground galaxy cluster, Abell 2744, warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang.  This is the first of the Frontier Fields to be imaged.

Abell 2744, the first of the Frontier Fields to be imaged, is part of Hubble’s 25th anniversary collection of top images. The immense gravity of the foreground galaxy cluster warps space to brighten and magnify images of far-more-distant background galaxies. Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

 

The 25th birthday is a significant milestone, so Hubble is throwing a year-long celebration, with events happening in communities and online throughout 2015. Last week, Tony Darnell hosted a discussion of the beauty and scientific relevance of the Hubble 25th anniversary images, one of the many anniversary-themed Hubble Hangouts he’ll be doing as the months go on. To keep an eye on upcoming events, see the images, and learn about the science, visit our special 25th anniversary website, Hubble25th.org.

MACS J0416 Data is Complete

Observations of another Frontier Fields galaxy cluster and parallel field are complete. This time, we have new images for you of MACS J0416.1-2403. Here’s the galaxy cluster:

macs

And here is the parallel field:

 macs2

Beautiful, aren’t they? This is the second Frontier Fields cluster and parallel field to be fully imaged. You can see the first here.

Remember that to maximize scientific discovery, Hubble is using two of its instruments simultaneously to examine both the cluster and the parallel field, then observing the same areas again with the instruments switched.

Hubble takes two sets of observations, called epochs, in order to thoroughly examine the two areas. During the first, Hubble spent 80 orbits with the Advanced Camera for Surveys (ACS) pointing at the main galaxy cluster, and Wide Field Camera 3 (WFC3) looking at the parallel field. ACS provides a visible-light view, and WFC3 adds near-infrared light.

During the second epoch, Hubble spent 70 orbits targeting WFC3 on the main cluster and ACS on the parallel field.

Scientists are poring over the new data, and one result is already in. Expect to hear more about these observations in the near future.

Mapping Mass in a Frontier Fields Cluster

The Frontier Fields project’s examination of galaxy cluster MACS J0416.1-2403 has led to a precise map that shows both the amount and distribution of matter in the cluster. MACS J0416.1-2403 has 160 trillion times the mass of the Sun in an area over 650,000 light-years across.

The mass maps have a two-fold purpose: they identify the location of mass in the galaxy clusters, and by doing so make it easier to characterize lensed background galaxies.

Mass map of galaxy cluster MCS J0416.1–2403

The galaxy clusters under observation in Frontier Fields are so dense in mass that their gravity distorts and bends the light from the more-distant galaxies behind them, creating the magnifying effect known as gravitational lensing. Astronomers use the lensing effect to determine the location of concentrations of mass in the cluster, depicted here as a blue haze. Credit: ESA/Hubble, NASA, HST Frontier Fields

Astronomers use the distortions of light caused by mass concentrations to pinpoint the distribution of mass within the cluster, including invisible dark matter. Weakly lensed background galaxies, visible in the outskirts of the cluster where less mass accumulates, may be stretched into slightly more elliptical shapes or transformed into smears of light. Strongly lensed galaxies, visible in the inner core of the cluster where greater concentrations of mass occur, can appear as sweeping arcs or rings, or even appear multiple times throughout the image. And as a dual benefit, as the clusters’ mass maps improve, it becomes easier to identify which galaxies are strongly lensed, and which galaxies are farther away.

Stronger lensing produces greater distortions. Astronomers can work backwards from the distortions to pinpoint the greater concentrations of mass responsible for producing such altered images.

Stronger lensing produces greater distortions. Astronomers can work backwards from the distortions to pinpoint the greater concentrations of mass responsible for producing such altered images. Credit: A. Feild (STScI)

The depth of the Frontier Fields images allows astronomers to see extremely faint objects, including many more strongly lensed galaxies than seen in previous observations of the cluster. Hubble identified 51 new multiply imaged galaxies around this cluster, for instance, quadrupling the number found in previous surveys. Because the galaxies are multiples, that means almost 200 strongly lensed images appear in the new observations, allowing astronomers to produce a highly constrained map of the cluster’s mass, inclusive of both visible and dark matter.

The dark matter aspect is particularly intriguing. Because these types of Frontier Fields analyses create extremely precise maps of the locations of dark matter, they provide the potential for testing the nature of dark matter. Learning where dark matter concentrates in massive galaxy clusters can give clues to how it behaves and changes. And as the mass maps become more precise, astronomers are better able to determine the distance of the lensed galaxies.

In order to obtain a complete picture of MACS J0416.1-2403’s mass, astronomers will also need to include weak lensing measurements. Follow up observations will include further Frontier Fields imaging, as well as X-ray measurements of hot gas and spectroscopic redshifts to break down the total mass distribution into dark matter, gas, and stars.

Frontier Fields Finds Faint Light of Homeless Stars

The Frontier Fields’ project has detected the glow of about 200 billion freely drifting stars within the massive galaxy cluster Abell 2744. The stars were dragged from their home galaxies by gravitational tides during collisions and interactions over the course of 6 billion years.

As many as six Milky Way-sized galaxies were torn apart in the cluster. The light of the outcast stars is believed to contribute to 10 percent of the cluster’s brightness, though that light is quite faint because the density of the stars is low. The combination of depth and multiwavelength observations provided by the Frontier Fields program makes this study of such dim stars possible.

The total starlight of galaxy cluster Abell 2744 is depicted here in blue in this Frontier Fields image. Not all the starlight is contained within the galaxies, which appear as blue-white objects. A portion of the light comes from stars that have been pulled from their galaxies and now drift untethered within the cluster. Credit: NASA, ESA, M. Montes (IAC), and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

The stars are rich in heavy elements such as oxygen, carbon, and nitrogen, which means they formed from material released by earlier generations of stars. The presence of these elements indicates that the stars likely came from galaxies with similar mass and metallicity to our own Milky Way galaxy, which have the ability to sustain ongoing star formation and thus build populations of such chemically enriched stars. Elliptical galaxies are low in star formation while dwarf galaxies lack the kind of constant star formation that would be essential.

This discovery indicates that a significant fraction of the stars that would otherwise end up in these galaxies is being stripped out in the merger process. Astronomers intend to look for the light of such estranged stars in the remainder of the Frontier Fields galaxy clusters.

Seeing Double (or More!) in Frontier Fields Images

The immense gravity in this foreground galaxy cluster, Abell 2744, warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang.  This is the first of the Frontier Fields to be imaged.

Galaxy cluster Abell 2744, the first of the Frontier Fields to be imaged.

Take a long look at this image. You’re seeing a lot of distant galaxies magnified by the natural “gravitational lens” of galaxy cluster Abell 2744. But you aren’t seeing as many as you think.

Gravitational lenses, natural magnifiers created in space when light is bent by the enormous mass of galaxy clusters, distort and enlarge the images of distant galaxies behind the cluster. But they do more than that: sometimes they replicate them, like multiple images in a funhouse mirror.

abell multiple

Galaxy cluster Abell 2744, with multiple images of individual galaxies marked. These multiple images are produced by the cluster’s gravitational lens.

In the above image, we’ve marked the galaxies that are actually images of the same galaxy by overlaying them with numbered triangles. Each galaxy has a number. The multiple images are identified by letters. The galaxies labeled 1a, 1b, and 1 c, for instance, are one galaxy, its image repeated three times. (Only numbers and letters are significant. The colors don’t represent anything, but are used to make it easier to distinguish the various numbered galaxies.)

In previous posts, we explained that mass distorts space. Light from a distant galaxy follows space’s curve like a ball rolling along a putting green. (Think of space as a miniature golf course with fewer animatronic dinosaurs.)

Sometimes, the level of distortion sends the light to multiple places. If you’ve ever seen a single candle reflected multiple times in the bottom of a wineglass, you’ve seen this distorting effect occur in lenses. In fact, gravitational lensing is so similar to glass lensing that you could replicate the distortions of a gravitational lens by grinding a glass lens to the same proportions and bumps.

And cosmic lenses are quite lumpy. The galaxies of the cluster, embedded in halos of dark matter, create bumps of mass. Light can take multiple paths around the galaxy cluster as it encounters the distortions in space-time created by the cluster’s mass. The closer the light of more-distant galaxies passes to the lens, the stronger the deflection. If the light passes close enough to the lens, these multiple images are likely to appear. The individual galaxies in the cluster also add small deflections, and occasionally help produce multiple paths for the light to reach us.

When astronomers look at a lensed image, they’re looking at a giant puzzle. They need to figure out where all the mass is in the image – most of it, being dark matter, is invisible. Pinpointing the multiple images of identical galaxies helps accomplish this because they’re a good indicator of how dramatically the light is being deflected.

Abell2744-multilens-1+markers Abell2744-multilens-3+markers

Some of the multiple images are obvious. Galaxy images 1a, 1b and 1c (left image) are good examples – they’re blue galaxies with red centers, and they look very like one another. The green-hued galaxy identified by 3a, 3b and 3c (right image) is another good example. Astronomers seek out those obvious candidates to start with, then try to build a model of how the mass in the cluster is distributed. Based on that model, they start identifying the multiple images that aren’t so obvious: Does this reddish galaxy to the side have a counterpart where the model says it should be? Analysis of attributes like color, and especially distance, also play an important role in determining which galaxies are multiples — a technique that comes in handy in many situations.

Thanks to reader Judy Schmidt for the idea for this post.

 

How Hubble Observations Are Scheduled

This is the third in a three-part series.

After observing time is awarded, the Institute creates a long-range plan. This plan ensures that the diverse collection of observations are scheduled as efficiently as possible. This task is complicated because the telescope cannot be pointed too close to bright objects like the Sun, the Moon, and the sunlit side of Earth. Adding to the difficulty, most astronomical targets can only be seen during certain months of the year; some instruments cannot operate in the high space-radiation areas of Hubble ’s orbit; and the instruments regularly need to be calibrated. These diverse constraints on observations make telescope scheduling a complex optimization problem that Institute staff are continually solving, revising, and improving.”

Preparing for an observation also involves selecting guide stars to stabilize.the telescope’s pointing and center the target in the instrument’s field of view. The selection is done automatically by the Institute’s computers, which choose two stars per pointing from a catalog of almost a billion stars. These guide stars will be precisely positioned within the telescope’s fine guidance sensors, ensuring that the target region and orientation of the sky is observed by the desired instrument.”]

A weekly, short-term schedule is created from the long-range plan. This schedule is translated into detailed instructions for both the telescope and its instruments to perform the observations and calibrations for the week. From this information, daily command loads are then sent from the Institute to NASA’s Goddard Space Flight Center to be uplinked to Hubble.

Hubble’s Flight Operations Team resides in the Space Telescope Operations Control Center at NASA’s Goddard Space Flight Center in Greenbelt, Md.  In addition to monitoring the health and safety of the telescope, they also send command loads to the spacecraft, monitor their execution, and arrange for transmission of science and engineering data to the ground.

Hubble’s Flight Operations Team resides in the Space Telescope Operations Control Center at NASA’s Goddard Space Flight Center in Greenbelt, Md. In addition to monitoring the health and safety of the telescope, they also send command loads to the spacecraft, monitor their execution, and arrange for transmission of science and engineering data to the ground.

The journey from proposal through selection and scheduling culminates in the email informing astronomers that their data is ready to be accessed. Usually, the process takes more than a year from idea to data—sometimes even longer. Of course, that’s when the real work begins—the analysis of the data and the hard work of uncovering another breakthrough Hubble discovery!