Frontier Fields Q&A: Redshift and Looking Back in Time

Q: What do you mean when you say you’re “seeing some of the earliest galaxies in the universe?” How does looking into deep space allow you to look back in time?

The simple answer is that light travels and the universe is huge. Light travels very fast – 186,000 miles (300,000 km) per second, but it still has to move across the vast distances of space. Remember that for us to see anything – from the flash of a camera to the glow of a really distant galaxy, we have to wait for its light to strike our eyes.

That camera flash shows in our vision instantaneously because it doesn’t have far to go. But distances in the cosmos are so vast that it takes light a long time to reach us. The light from our closest companion, the Moon, takes about 1.3 seconds to cross the 239,000 miles (390,000 km) between us. So when you look up at the sky, you don’t see the Moon as it currently is. You see it as it appeared 1.3 seconds ago.

This is so 1.3 seconds ago. Credit: Luc Viatour, Wikimedia Commons

This is so 1.3 seconds ago.
Credit: Luc Viatour, Wikimedia Commons

The greater the distances, the greater the time difference. Light from the Sun needs about 500 seconds, or about eight minutes, to reach us from 93,200 miles (150 million km) away. Light from Neptune needs about four hours to cross the solar system.

We refer to these distances by the time it takes light to cross them. So Neptune is four light-hours away, and the Sun is 500 light-seconds away. Light from the next nearest star, however, needs four years to reach us across space. We say that star is four light-years away. The light we see from that star in today’s sky is also four years old. For galaxies, we’re talking millions to billions of light years. So we see the farthest galaxies as they appeared in the early universe, because the light that left them way back then is finally reaching us just now.

Q: What does it mean when you talk about a galaxy’s redshift?

When we’re discussing the Frontier Fields project, we’re talking about something more precisely called “cosmological redshift.” The space light is traveling through is expanding. That means that the light wave gets stretched as it travels, like a spring being pulled into a different shape. This stretching shifts light into longer wavelengths.

Since red light has a longer wavelength than blue light, the light is said to be "red-shifted." Credit: NASA

Since red light has a longer wavelength than blue light, the light is said to be “redshifted.” Credit: NASA

The farthest galaxies in the universe would have originally emitted visible and ultraviolet light, but since that light has been stretched as it travels, those galaxies appear to us instead in the form of infrared light. Cosmological redshift refers to that change and the measure of that change.

Q: Why do we hear the Frontier Fields galaxies described in terms of redshift and light-years? Which is right?

They tell us different things. Light-years are a measurement of distance defined by the time it takes light to travel in a year. But distance is notoriously difficult to measure in astronomy.

Cosmological redshift is a direct measurement of the expansion of space. Astronomers describe galaxies in terms of their redshift because unlike distance, it’s a clear and definite value that’s relatively easy to measure without many errors.

Astronomers have different models of how the universe works, and they can plug the redshift into those models to get the distance to a galaxy – but the distance will differ depending on which model of the universe they use. The variations in those models include things like the shape of the universe, the rate at which it’s expanding, the amount of normal matter it contains, etc.

Astronomy is about figuring out how the universe works and narrowing down all those models to the best one, and we still have a long way to go. Projects like Frontier Fields will help us rule out those models that don’t fit the incoming data.

Q: Everywhere we look with the Frontier Fields project, galaxies appear to be moving away from us. Does this mean we’re in the center of the universe?

No. It’s evidence that space is expanding. The easiest way to visualize this is to imagine a balloon. If you cover the balloon with dots, and then inflate it, no matter which dot you pick to represent your position, all the other dots will appear to be moving away from it as the balloon expands. Imagine this happening in three dimensions instead of on a flat surface, and you can understand why it looks like other galaxies are rushing away.

Q: So space is expanding and the light from the earliest galaxies has traveled over 13 billion years to reach us. If space is expanding, are those galaxies even farther away now?

Yes. For nearby galaxies, the expansion doesn’t make much of a difference. But for galaxies extremely far away, the distance is significant. That’s because the farther away an object is, the more space there is between us and the object. That in turn means there’s more space to undergo expansion, so the objects appear to be moving away from us much faster. Light from the earliest galaxies may have traveled 13 billion years to reach us, but those galaxies could be around 45 billion light-years distant by now.

Q: Does this mean the galaxies are moving faster than the speed of light?

No. No object can travel through space faster than the speed of light. But the expansion of space itself is not so constrained – in fact, theories of the beginning of the universe visualize the initial expansion of the Big Bang happening with unthinkable speed. But because the speed of light is only so fast, there are galaxies in the distance whose light we cannot yet see. We call this the edge of the visible universe.

Q: What’s out there, past the edge?

Space dragons! Ok, probably not. Credit: Uranometria

DRAGONS! SPACE DRAGONS! GIANT, COSMIC FIRE-BREATHING SPACE DRA– Ok, fine, probably not. Credit: Uranometria, Wikimedia Commons

We expect more of the same, though this is still an open question that astronomers are researching and theorizing about. We’ve found we tend to see the same distribution of galaxies no matter which direction we look in the universe. If we were somehow transported to a galaxy on what, for Earth, is the edge of the visible universe, the border of the visible universe would move, but the universe would neither change nor look very different to us.

Q: Do you have a question about the Frontier Fields project?

Leave it in comments, and we’ll see if we can answer it.

Cosmic Archeology

Today’s guest post is by Dr. Mario Livio, Hubble astrophysicist and author of the blog “A Curious Mind.” A version of this post appeared previously on Dr. Livio’s blog.

During the Christmas season of 1995, the Hubble Space Telescope was pointed for 10 consecutive days at an area in the sky not larger than the one you would see through a drinking straw. The region of sky, in the Ursa Major constellation, was selected so as to be as “boring” as possible — empty of stars in both our own Milky Way galaxy and in relatively nearby galaxies. The idea was for Hubble to take as deep an image of the distant universe as possible. The resulting image was astounding.  With very few exceptions, every point of light in this image is an entire galaxy, with something like 100 billion stars like the Sun.

Image

The original Hubble Deep Field image.

Detailed analysis revealed that the very remote galaxies were physically smaller in size than today’s galaxies, and that their morphologies were more disturbed. Unlike the grand-design spirals or smooth elliptical shapes that we see in relatively close galaxies, the distant objects look like train wrecks. Both of these observations fit nicely into the idea that galaxies evolve largely by “mergers and acquisitions.” Small building blocks merge together to form larger ones, or cold flows of dark matter along dense filaments fuel the growth. What we see in the distant past are those interacting—and hence smaller and less regular in shape—building blocks.

Since then, Hubble observed even deeper, producing the “Hubble Ultra Deep Field” in 2004, and then in 2009 an image that included infrared observations taken with the new Wide Field Camera 3. This observation allowed astronomers to glimpse the universe at its infancy, when it was less than 500 million years old (the universe today is 13.8 billion years old). The Deep Field observations have also enabled researchers to reconstruct the history of global cosmic star formation. We now know that about 8 billion years ago the universe reached its peak in terms of the new star-birth rate, and that rate has been declining ever since — our universe is past its prime.

 Image

This tiny object in the Hubble Ultra Deep Field is a compact galaxy of blue stars that existed 480 million years after the Big Bang. Its light traveled 13.2 billion years to reach Hubble.

The Chandra X-ray Observatory has created its own Deep Field observations, discovering hundreds of low-luminosity active galactic nuclei, where disks feed mass onto central black holes, and emit copious x-ray radiation.

Infrared observations with the Spitzer Space Telescope completed the picture of the deepest images of the cosmos to date. Together, Hubble, Chandra, and Spitzer have created a detailed tapestry of a dynamic, evolving universe in which some two hundred billion galaxies are within the reach of our present telescopes.

Currently, Hubble is engaged in observing six new deep fields, each one centering on a galaxy cluster whose gravity can deflect, multiply, and magnify the light from more distant objects (the effect is known as “gravitational lensing”). In parallel, Hubble will also observe six deep “blank” fields. The goal is to use those so-called “Frontier Fields” to reveal populations of fainter galaxies, and to characterize the morphologies of distant star-forming galaxies.

The first of these super-deep views of the universe has already revealed almost 3000 of previously unseen, distant galaxies.

To see the very first galaxies that formed in our universe, we will have to await the James Webb Space Telescope, on schedule for launch in 2018. From a cosmic perspective, new discoveries are just around the corner!