Galaxy Shapes in the Frontier Fields Observations

We can learn a lot about galaxies by analyzing their light, through computer modeling, and using other complex techniques. But at the most basic level, we can learn about galaxies by studying their shapes.

Galaxy appearance immediately reveals certain characteristics. Elliptical galaxies contain a wealth of old stars. Spiral galaxies are full of gas and dust. Distorted galaxies have likely experienced a gravitational interaction with another galaxy that warped their structure.

The Mice, as these colliding galaxies are called, are a pair of spiral galaxies seen about 160 million years after their closest encounter. Gravity has drawn stars and gas out of the galaxies into long tails.  Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

The Mice, as these distorted colliding galaxies are called, are a pair of spiral galaxies seen about 160 million years after their closest encounter. Gravity has drawn stars and gas out of the galaxies into long tails. Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

The Frontier Fields project adds another dimension to this simple analysis. When we look at extremely distant galaxies with the magnification of gravitational lensing, we see new detail that was previously obscured by distance. Their shapes are clues to what occurred within those galaxies when they were very young.

Galaxies viewed through the gravitational lenses of the Frontier Fields clusters can be seen at a resolution 10 times greater than non-lensed galaxies. That means those tiny red dots that so thrill astronomers in normal Hubble images actually have some structure in Frontier Fields imagery.

Previous studies, such as the Hubble Ultra Deep Field, The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, or even adaptive optics-enhanced studies by ground telescopes have shown that young, star-forming galaxies at about a redshift of 2 (existing when the universe was about 3.3 billion years old) appear to have a certain lumpiness. But without gravitational lensing, we lack the resolution to say for sure whether those lumps were massive clusters of newly forming stars, or whether some other factor was causing those galaxies to have a clumpy appearance.

Frontier Fields has revealed that yes, many of those galaxies have star-forming knots that really are quite large, implying that star formation occurred in a very different way in the early universe, perhaps involving greater quantities of gas in those young galaxies than previously expected.

Frontier Fields has also given us a better grasp of the physical size of gravitationally lensed young galaxies even farther away, at a redshift of 9 (when the universe was around 500 million years old). Observations show that these galaxies are actually quite small – perhaps 200 parsecs across, while a typical galaxy you see today is closer to 10,000 parsecs across. These observations help plan future observations with the Webb Space Telescope, picking out what will hopefully be the best targets for study.

This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The Frontier Fields project is collecting galaxies from the earliest epochs of the universe to add to such comparisons. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team

This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The Frontier Fields project is collecting galaxies from the earliest epochs of the universe to add to such comparisons. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team

Galaxy shape also plays a role in discoveries in the Frontier Fields’ six parallel fields, which are unaffected by gravitational lensing but provide a view into space almost as deep as Hubble’s famous Ultra Deep Field, with three times the area.

It’s well known that galaxies collide and interact, drawn to one another by gravity. Most galaxies in the universe are thought to have gone through the merger process in the early universe, but the importance of this process is an open question. The transitional period during which galaxies are interacting and merging is relatively short, making it difficult to capture. A distant galaxy may appear clumpy and distorted, but is its appearance due to a merger – or is it just a clumpy galaxy?

Collision-related features — such as tails of stars and gas drawn out into space by gravity, or shells around elliptical galaxies that occur when stars get locked into certain orbits – are excellent indicators of merging galaxies but are hard to detect in distant galaxies with ordinary observations. Frontier Fields’ parallel fields are providing astronomers with a collection of faraway galaxies with these collision-related features, allowing astronomers to learn more about how these mergers affected the galaxies we see today.

As time goes on and the cluster and parallel Frontier Fields are explored in depth by astronomers, we expect to to learn much more about how galaxy evolution and galaxy shapes intertwine. New results are on the way.

MACS J0416 Data is Complete

Observations of another Frontier Fields galaxy cluster and parallel field are complete. This time, we have new images for you of MACS J0416.1-2403. Here’s the galaxy cluster:

macs

And here is the parallel field:

 macs2

Beautiful, aren’t they? This is the second Frontier Fields cluster and parallel field to be fully imaged. You can see the first here.

Remember that to maximize scientific discovery, Hubble is using two of its instruments simultaneously to examine both the cluster and the parallel field, then observing the same areas again with the instruments switched.

Hubble takes two sets of observations, called epochs, in order to thoroughly examine the two areas. During the first, Hubble spent 80 orbits with the Advanced Camera for Surveys (ACS) pointing at the main galaxy cluster, and Wide Field Camera 3 (WFC3) looking at the parallel field. ACS provides a visible-light view, and WFC3 adds near-infrared light.

During the second epoch, Hubble spent 70 orbits targeting WFC3 on the main cluster and ACS on the parallel field.

Scientists are poring over the new data, and one result is already in. Expect to hear more about these observations in the near future.

Frontier Fields Finds Faint Light of Homeless Stars

The Frontier Fields’ project has detected the glow of about 200 billion freely drifting stars within the massive galaxy cluster Abell 2744. The stars were dragged from their home galaxies by gravitational tides during collisions and interactions over the course of 6 billion years.

As many as six Milky Way-sized galaxies were torn apart in the cluster. The light of the outcast stars is believed to contribute to 10 percent of the cluster’s brightness, though that light is quite faint because the density of the stars is low. The combination of depth and multiwavelength observations provided by the Frontier Fields program makes this study of such dim stars possible.

The total starlight of galaxy cluster Abell 2744 is depicted here in blue in this Frontier Fields image. Not all the starlight is contained within the galaxies, which appear as blue-white objects. A portion of the light comes from stars that have been pulled from their galaxies and now drift untethered within the cluster. Credit: NASA, ESA, M. Montes (IAC), and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

The stars are rich in heavy elements such as oxygen, carbon, and nitrogen, which means they formed from material released by earlier generations of stars. The presence of these elements indicates that the stars likely came from galaxies with similar mass and metallicity to our own Milky Way galaxy, which have the ability to sustain ongoing star formation and thus build populations of such chemically enriched stars. Elliptical galaxies are low in star formation while dwarf galaxies lack the kind of constant star formation that would be essential.

This discovery indicates that a significant fraction of the stars that would otherwise end up in these galaxies is being stripped out in the merger process. Astronomers intend to look for the light of such estranged stars in the remainder of the Frontier Fields galaxy clusters.

Seeing Double (or More!) in Frontier Fields Images

The immense gravity in this foreground galaxy cluster, Abell 2744, warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang.  This is the first of the Frontier Fields to be imaged.

Galaxy cluster Abell 2744, the first of the Frontier Fields to be imaged.

Take a long look at this image. You’re seeing a lot of distant galaxies magnified by the natural “gravitational lens” of galaxy cluster Abell 2744. But you aren’t seeing as many as you think.

Gravitational lenses, natural magnifiers created in space when light is bent by the enormous mass of galaxy clusters, distort and enlarge the images of distant galaxies behind the cluster. But they do more than that: sometimes they replicate them, like multiple images in a funhouse mirror.

abell multiple

Galaxy cluster Abell 2744, with multiple images of individual galaxies marked. These multiple images are produced by the cluster’s gravitational lens.

In the above image, we’ve marked the galaxies that are actually images of the same galaxy by overlaying them with numbered triangles. Each galaxy has a number. The multiple images are identified by letters. The galaxies labeled 1a, 1b, and 1 c, for instance, are one galaxy, its image repeated three times. (Only numbers and letters are significant. The colors don’t represent anything, but are used to make it easier to distinguish the various numbered galaxies.)

In previous posts, we explained that mass distorts space. Light from a distant galaxy follows space’s curve like a ball rolling along a putting green. (Think of space as a miniature golf course with fewer animatronic dinosaurs.)

Sometimes, the level of distortion sends the light to multiple places. If you’ve ever seen a single candle reflected multiple times in the bottom of a wineglass, you’ve seen this distorting effect occur in lenses. In fact, gravitational lensing is so similar to glass lensing that you could replicate the distortions of a gravitational lens by grinding a glass lens to the same proportions and bumps.

And cosmic lenses are quite lumpy. The galaxies of the cluster, embedded in halos of dark matter, create bumps of mass. Light can take multiple paths around the galaxy cluster as it encounters the distortions in space-time created by the cluster’s mass. The closer the light of more-distant galaxies passes to the lens, the stronger the deflection. If the light passes close enough to the lens, these multiple images are likely to appear. The individual galaxies in the cluster also add small deflections, and occasionally help produce multiple paths for the light to reach us.

When astronomers look at a lensed image, they’re looking at a giant puzzle. They need to figure out where all the mass is in the image – most of it, being dark matter, is invisible. Pinpointing the multiple images of identical galaxies helps accomplish this because they’re a good indicator of how dramatically the light is being deflected.

Abell2744-multilens-1+markers Abell2744-multilens-3+markers

Some of the multiple images are obvious. Galaxy images 1a, 1b and 1c (left image) are good examples – they’re blue galaxies with red centers, and they look very like one another. The green-hued galaxy identified by 3a, 3b and 3c (right image) is another good example. Astronomers seek out those obvious candidates to start with, then try to build a model of how the mass in the cluster is distributed. Based on that model, they start identifying the multiple images that aren’t so obvious: Does this reddish galaxy to the side have a counterpart where the model says it should be? Analysis of attributes like color, and especially distance, also play an important role in determining which galaxies are multiples — a technique that comes in handy in many situations.

Thanks to reader Judy Schmidt for the idea for this post.

 

How Hubble Observations Are Scheduled

This is the third in a three-part series.

After observing time is awarded, the Institute creates a long-range plan. This plan ensures that the diverse collection of observations are scheduled as efficiently as possible. This task is complicated because the telescope cannot be pointed too close to bright objects like the Sun, the Moon, and the sunlit side of Earth. Adding to the difficulty, most astronomical targets can only be seen during certain months of the year; some instruments cannot operate in the high space-radiation areas of Hubble ’s orbit; and the instruments regularly need to be calibrated. These diverse constraints on observations make telescope scheduling a complex optimization problem that Institute staff are continually solving, revising, and improving.”

Preparing for an observation also involves selecting guide stars to stabilize.the telescope’s pointing and center the target in the instrument’s field of view. The selection is done automatically by the Institute’s computers, which choose two stars per pointing from a catalog of almost a billion stars. These guide stars will be precisely positioned within the telescope’s fine guidance sensors, ensuring that the target region and orientation of the sky is observed by the desired instrument.”]

A weekly, short-term schedule is created from the long-range plan. This schedule is translated into detailed instructions for both the telescope and its instruments to perform the observations and calibrations for the week. From this information, daily command loads are then sent from the Institute to NASA’s Goddard Space Flight Center to be uplinked to Hubble.

Hubble’s Flight Operations Team resides in the Space Telescope Operations Control Center at NASA’s Goddard Space Flight Center in Greenbelt, Md.  In addition to monitoring the health and safety of the telescope, they also send command loads to the spacecraft, monitor their execution, and arrange for transmission of science and engineering data to the ground.

Hubble’s Flight Operations Team resides in the Space Telescope Operations Control Center at NASA’s Goddard Space Flight Center in Greenbelt, Md. In addition to monitoring the health and safety of the telescope, they also send command loads to the spacecraft, monitor their execution, and arrange for transmission of science and engineering data to the ground.

The journey from proposal through selection and scheduling culminates in the email informing astronomers that their data is ready to be accessed. Usually, the process takes more than a year from idea to data—sometimes even longer. Of course, that’s when the real work begins—the analysis of the data and the hard work of uncovering another breakthrough Hubble discovery!

How Hubble Observations Are Planned

This is the second in a three-part series.

Researchers awarded telescope time based on the scientific merit of their Phase I proposal must submit a Phase II proposal that specifies the many details necessary for implementing and scheduling of the observations. These details include such items as precise target locations and the wavelengths of any filters required.

Once an observation has occurred, the data becomes part of the Hubble archive, where astronomers can access it over the Internet. Most data is marked as proprietary within the Institute computer systems for 12 months. This protocol allows observers time to analyze the data and publish their results. At the end of this proprietary-data-rights period, the data is made available to the rest of the astronomical community. (Most of the very large programs, such as Frontier Fields, have given up proprietary time as part of their proposal.)

This is a view of the many computers that are part of the Barbara A. Mikulski Archive for Space Telescopes (MAST), located at the Space Telescope Science Institute (STScI) in Baltimore, Md. The archive is named in honor of the United States Senator from Maryland for her career-long achievements and becoming the longest-serving woman in U.S. Congressional history. MAST is NASA’s repository for all of its optical and ultraviolet-light observations, some of which date to the early 1970s. The archive holds data from 16 NASA telescopes, including current missions such as the Hubble Space Telescope and Kepler. Senator Mikulski is in the center, STScI Director Matt Mountain at her right, and STScI Deputy Director Kathryn Flanagan at her left. The plaque to image right is a photo of Supernova Milkuski, an exploding star that the Hubble Space Telescope spotted on Jan. 25, 2012. It was named in honor of the Senator by Nobel Laureate Adam Riess and the supernova search team with which he is currently working. The supernova, which lies 7.4 billion light-years away, is the titanic detonation of a star more than eight times as massive as our Sun.

This is a view of the many computers that are part of the Barbara A. Mikulski Archive for Space Telescopes (MAST), located at the Space Telescope Science Institute (STScI) in Baltimore, Md. The archive is named in honor of the United States Senator from Maryland for her career-long achievements and becoming the longest-serving woman in U.S. Congressional history. MAST is NASA’s repository for all of its optical and ultraviolet-light observations, some of which date to the early 1970s. The archive holds data from 16 NASA telescopes, including current missions such as the Hubble Space Telescope and Kepler. Senator Mikulski is in the center, STScI Director Matt Mountain at her right, and STScI Deputy Director Kathryn Flanagan at her left. The plaque to image right is a photo of Supernova Milkuski, an exploding star that the Hubble Space Telescope spotted on Jan. 25, 2012. It was named in honor of the Senator by Nobel Laureate Adam Riess and the supernova search team with which he is currently working. The supernova, which lies 7.4 billion light-years away, is the titanic detonation of a star more than eight times as massive as our Sun.

Along with their Phase II proposal, observers can also apply for a financial grant to help them process and analyze the observations. These grant requests are reviewed by an independent financial review committee, which then makes recommendations to the Institute director for funding. Grant funds are also available for researchers who submit Phase I proposals to analyze non-proprietary Hubble data already archived. The financial committee evaluates these requests as well.

Up to 10 percent of Hubble ’s time is reserved as director’s discretionary time and is allocated by the Institute director. Astronomers can apply to use these orbits any time during the course of the year. Discretionary time is typically awarded for the study of unpredictable phenomena such as new supernovae or the appearance of a new comet. Historically, directors have allocated large percentages of this time to special programs that are too big to be approved for any one astronomy team. For example, the observations of the Frontier Fields use director’s discretionary time.

In my last post, I talked about how observations are proposed.  In my next post, I will talk about how observations are scheduled.

How Hubble Observations Are Proposed

This is the first in a three-part series. 

Time on the Hubble Space Telescope is a precious commodity. As a space telescope, Hubble can observe 24 hours a day, but its advantageous perch also attracts a large number of astronomers who want to use it. The current oversubscription rate—the amount of time requested versus time awarded—is six to one.

The process of observing with Hubble begins with the annual Call for Proposals issued by the Space Telescope Science Institute to the astronomical community. Astronomers worldwide are given approximately two months to submit a Phase I proposal that makes a scientific case for using the telescope. Scientists typically request the amount of telescope time they desire in orbits. It takes 96 minutes for the telescope to make one trip around the Earth, but because the Earth usually blocks the target for part of the orbit, typical observing time is only about 55 minutes per orbit.

Longer observations require a more compelling justification since only a limited number of orbits are available. Winning proposals must be well reasoned and address a significant astronomical question or issue. Potential users must also show that they can only accomplish their observations with Hubble ’s unique capabilities and cannot achieve similar results with a ground-based observatory.

The Institute assembles a time allocation committee (TAC), comprising experts from the astronomical community, to determine which proposals will receive observing time. The committee is subdivided into panels that review the proposals submitted within a particular astronomical category. Sample categories include stellar populations, solar system objects, and cosmology. The committee organizers take care to safeguard the process from conflicts of interest, as many of the panel members are likely to have submitted, or to be a co-investigator, on their own proposals.

The time allocation committee (TAC) discusses which proposals will receive observing time on Hubble.

The time allocation committee (TAC) discusses which proposals will receive observing time on Hubble.

Proposals are further identified as general observer (GO), which range in size from a single orbit to several hundred, or snapshot, which require only 45 minutes or less of telescope time. Snapshots are used to fill in gaps within Hubble ’s observing schedule that cannot be filled by general observer programs. Once the committee has reviewed the proposals and voted on them, it provides a recommended list to the Institute director for final approval.

In my next post, I will discuss how observations are planned.

Frontier Fields Q&A: Redshift and Looking Back in Time

Q: What do you mean when you say you’re “seeing some of the earliest galaxies in the universe?” How does looking into deep space allow you to look back in time?

The simple answer is that light travels and the universe is huge. Light travels very fast – 186,000 miles (300,000 km) per second, but it still has to move across the vast distances of space. Remember that for us to see anything – from the flash of a camera to the glow of a really distant galaxy, we have to wait for its light to strike our eyes.

That camera flash shows in our vision instantaneously because it doesn’t have far to go. But distances in the cosmos are so vast that it takes light a long time to reach us. The light from our closest companion, the Moon, takes about 1.3 seconds to cross the 239,000 miles (390,000 km) between us. So when you look up at the sky, you don’t see the Moon as it currently is. You see it as it appeared 1.3 seconds ago.

This is so 1.3 seconds ago. Credit: Luc Viatour, Wikimedia Commons

This is so 1.3 seconds ago.
Credit: Luc Viatour, Wikimedia Commons

The greater the distances, the greater the time difference. Light from the Sun needs about 500 seconds, or about eight minutes, to reach us from 93,200 miles (150 million km) away. Light from Neptune needs about four hours to cross the solar system.

We refer to these distances by the time it takes light to cross them. So Neptune is four light-hours away, and the Sun is 500 light-seconds away. Light from the next nearest star, however, needs four years to reach us across space. We say that star is four light-years away. The light we see from that star in today’s sky is also four years old. For galaxies, we’re talking millions to billions of light years. So we see the farthest galaxies as they appeared in the early universe, because the light that left them way back then is finally reaching us just now.

Q: What does it mean when you talk about a galaxy’s redshift?

When we’re discussing the Frontier Fields project, we’re talking about something more precisely called “cosmological redshift.” The space light is traveling through is expanding. That means that the light wave gets stretched as it travels, like a spring being pulled into a different shape. This stretching shifts light into longer wavelengths.

Since red light has a longer wavelength than blue light, the light is said to be "red-shifted." Credit: NASA

Since red light has a longer wavelength than blue light, the light is said to be “redshifted.” Credit: NASA

The farthest galaxies in the universe would have originally emitted visible and ultraviolet light, but since that light has been stretched as it travels, those galaxies appear to us instead in the form of infrared light. Cosmological redshift refers to that change and the measure of that change.

Q: Why do we hear the Frontier Fields galaxies described in terms of redshift and light-years? Which is right?

They tell us different things. Light-years are a measurement of distance defined by the time it takes light to travel in a year. But distance is notoriously difficult to measure in astronomy.

Cosmological redshift is a direct measurement of the expansion of space. Astronomers describe galaxies in terms of their redshift because unlike distance, it’s a clear and definite value that’s relatively easy to measure without many errors.

Astronomers have different models of how the universe works, and they can plug the redshift into those models to get the distance to a galaxy – but the distance will differ depending on which model of the universe they use. The variations in those models include things like the shape of the universe, the rate at which it’s expanding, the amount of normal matter it contains, etc.

Astronomy is about figuring out how the universe works and narrowing down all those models to the best one, and we still have a long way to go. Projects like Frontier Fields will help us rule out those models that don’t fit the incoming data.

Q: Everywhere we look with the Frontier Fields project, galaxies appear to be moving away from us. Does this mean we’re in the center of the universe?

No. It’s evidence that space is expanding. The easiest way to visualize this is to imagine a balloon. If you cover the balloon with dots, and then inflate it, no matter which dot you pick to represent your position, all the other dots will appear to be moving away from it as the balloon expands. Imagine this happening in three dimensions instead of on a flat surface, and you can understand why it looks like other galaxies are rushing away.

Q: So space is expanding and the light from the earliest galaxies has traveled over 13 billion years to reach us. If space is expanding, are those galaxies even farther away now?

Yes. For nearby galaxies, the expansion doesn’t make much of a difference. But for galaxies extremely far away, the distance is significant. That’s because the farther away an object is, the more space there is between us and the object. That in turn means there’s more space to undergo expansion, so the objects appear to be moving away from us much faster. Light from the earliest galaxies may have traveled 13 billion years to reach us, but those galaxies could be around 45 billion light-years distant by now.

Q: Does this mean the galaxies are moving faster than the speed of light?

No. No object can travel through space faster than the speed of light. But the expansion of space itself is not so constrained – in fact, theories of the beginning of the universe visualize the initial expansion of the Big Bang happening with unthinkable speed. But because the speed of light is only so fast, there are galaxies in the distance whose light we cannot yet see. We call this the edge of the visible universe.

Q: What’s out there, past the edge?

Space dragons! Ok, probably not. Credit: Uranometria

DRAGONS! SPACE DRAGONS! GIANT, COSMIC FIRE-BREATHING SPACE DRA– Ok, fine, probably not. Credit: Uranometria, Wikimedia Commons

We expect more of the same, though this is still an open question that astronomers are researching and theorizing about. We’ve found we tend to see the same distribution of galaxies no matter which direction we look in the universe. If we were somehow transported to a galaxy on what, for Earth, is the edge of the visible universe, the border of the visible universe would move, but the universe would neither change nor look very different to us.

Q: Do you have a question about the Frontier Fields project?

Leave it in comments, and we’ll see if we can answer it.