Galaxy Shapes in the Frontier Fields Observations

We can learn a lot about galaxies by analyzing their light, through computer modeling, and using other complex techniques. But at the most basic level, we can learn about galaxies by studying their shapes.

Galaxy appearance immediately reveals certain characteristics. Elliptical galaxies contain a wealth of old stars. Spiral galaxies are full of gas and dust. Distorted galaxies have likely experienced a gravitational interaction with another galaxy that warped their structure.

The Mice, as these colliding galaxies are called, are a pair of spiral galaxies seen about 160 million years after their closest encounter. Gravity has drawn stars and gas out of the galaxies into long tails.  Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

The Mice, as these distorted colliding galaxies are called, are a pair of spiral galaxies seen about 160 million years after their closest encounter. Gravity has drawn stars and gas out of the galaxies into long tails. Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA

The Frontier Fields project adds another dimension to this simple analysis. When we look at extremely distant galaxies with the magnification of gravitational lensing, we see new detail that was previously obscured by distance. Their shapes are clues to what occurred within those galaxies when they were very young.

Galaxies viewed through the gravitational lenses of the Frontier Fields clusters can be seen at a resolution 10 times greater than non-lensed galaxies. That means those tiny red dots that so thrill astronomers in normal Hubble images actually have some structure in Frontier Fields imagery.

Previous studies, such as the Hubble Ultra Deep Field, The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, or even adaptive optics-enhanced studies by ground telescopes have shown that young, star-forming galaxies at about a redshift of 2 (existing when the universe was about 3.3 billion years old) appear to have a certain lumpiness. But without gravitational lensing, we lack the resolution to say for sure whether those lumps were massive clusters of newly forming stars, or whether some other factor was causing those galaxies to have a clumpy appearance.

Frontier Fields has revealed that yes, many of those galaxies have star-forming knots that really are quite large, implying that star formation occurred in a very different way in the early universe, perhaps involving greater quantities of gas in those young galaxies than previously expected.

Frontier Fields has also given us a better grasp of the physical size of gravitationally lensed young galaxies even farther away, at a redshift of 9 (when the universe was around 500 million years old). Observations show that these galaxies are actually quite small – perhaps 200 parsecs across, while a typical galaxy you see today is closer to 10,000 parsecs across. These observations help plan future observations with the Webb Space Telescope, picking out what will hopefully be the best targets for study.

This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The Frontier Fields project is collecting galaxies from the earliest epochs of the universe to add to such comparisons. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team

This composite image shows examples of galaxies similar to our Milky Way at various stages of construction over a time span of 11 billion years. The galaxies are arranged according to time. Those on the left reside nearby; those at far right existed when the cosmos was about 2 billion years old. The Frontier Fields project is collecting galaxies from the earliest epochs of the universe to add to such comparisons. Credit: NASA, ESA, P. van Dokkum (Yale University), S. Patel (Leiden University), and the 3D-HST Team

Galaxy shape also plays a role in discoveries in the Frontier Fields’ six parallel fields, which are unaffected by gravitational lensing but provide a view into space almost as deep as Hubble’s famous Ultra Deep Field, with three times the area.

It’s well known that galaxies collide and interact, drawn to one another by gravity. Most galaxies in the universe are thought to have gone through the merger process in the early universe, but the importance of this process is an open question. The transitional period during which galaxies are interacting and merging is relatively short, making it difficult to capture. A distant galaxy may appear clumpy and distorted, but is its appearance due to a merger – or is it just a clumpy galaxy?

Collision-related features — such as tails of stars and gas drawn out into space by gravity, or shells around elliptical galaxies that occur when stars get locked into certain orbits – are excellent indicators of merging galaxies but are hard to detect in distant galaxies with ordinary observations. Frontier Fields’ parallel fields are providing astronomers with a collection of faraway galaxies with these collision-related features, allowing astronomers to learn more about how these mergers affected the galaxies we see today.

As time goes on and the cluster and parallel Frontier Fields are explored in depth by astronomers, we expect to to learn much more about how galaxy evolution and galaxy shapes intertwine. New results are on the way.

The Incredible Time Machine

Today’s guest post is by Mary Estacion. Mary is the News Video Producer at the Space Telescope Science Institute. She is also the host and producer of the “Behind the Webb” podcast series, which showcases the James Webb Space Telescope as it is being built as well as the engineers and scientists working on the observatory. The video in this post highlights a topic of particular interest to the Frontier Fields project — deep field astronomy.

The production of the “The Incredible Time Machine” video is part of a year-long celebration highlighting 25 years of the Hubble Space Telescope. Because of Hubble, we can see back to hundreds of millions of years after the Big Bang. This particular segment includes more than a half a dozen scientists from all over the country who have used Hubble to look at the universe’s earliest days. It takes you through the history of the Deep Field Program and shows how the addition of new instruments on Hubble throughout the years has furthered our understanding of the universe’s evolution.

For the video, go here:  http://hubble25th.org/video/5

The Marvel of Gravitational Lensing

A Giant Lensed Galaxy Arc

A Giant Lensed Galaxy Arc
The view of a distant galaxy (nearly 10 billion light-years away) has been warped into a nearly 90-degree arc of light by the gravity of the galaxy cluster known as RCS2 032727-132623 (about 5 billion light-years away).
Credit: NASA, ESA, J. Rigby (NASA GSFC), K. Sharon (KICP, U Chicago), and M. Gladders and E. Wuyts (U Chicago)

One of the coolest marvels in the universe is a phenomenon known as “gravitational lensing.” Unlike many topics in astronomy, the images are not what makes it appealing. Gravitational lensing produces streaks, arcs, and other distorted views that are intriguing, but don’t qualify for cosmic beauty pageants. What makes these images special is the intellectual understanding of how they are created, and the fact that they are even possible at all. The back story takes an ordinary, everyday process, and transforms it into cosmic proportions.

Most of us are familiar with the workings of a glass lens. If you have ever used a magnifying glass, you have seen how it changes the view of an object seen through it.

The glass lens collects light across its surface, which is generally much larger than the pupil of a human eye. Hence, a lens can amplify brightness. In addition, the path of a light ray is bent when it passes through the glass lens. [To be specific, the path bends when the light crosses from air to glass, and again when it crosses back from glass to air.] This bending is called refraction, and the common lens shape will focus the light to a point. When we view that collected light, our view of the object can be bigger or smaller depending on the distances involved, both from the object to the lens and from the lens to our eyes. In summary, a glass lens can amplify and magnify the light from an object.

Glass lenses, however, are not the only way that the path of light can be changed. Another way to redirect light comes from Einstein’s theory of general relativity.

My three-word summary of general relativity is “mass warps space.” The presence of a massive object, like a star, warps the space around it. When light crosses through warped space, it will change its direction. The result is that light that passes close enough to a massive object will be deflected. This deflection by mass is similar to refraction by glass.

Clusters of galaxies are huge concentrations of mass, including both the normal matter we see in the visible light from galaxies and the unseen dark matter spread throughout. Many galaxy clusters are massive enough to produce noticeable deflections of the light passing through or near them. The combined gravity in the cluster can warp space to act like a lens that gathers, amplifies, and magnifies light. Such a gravitational lens will be lumpy, not smooth, and will generally create distorted images of background galaxies seen through them. Also, this lensing often produces multiple images of the same background galaxy, as light from that galaxy is re-directed toward us along multiple paths through the cluster.

The simple idea of a glass lens becomes both cosmic and complex in gravitational lensing. Imagine a lens stretching millions of light-years across (many million million millions of miles). We don’t need to construct such a lens, as nature has provided a good number of them through the warping of the fabric of space. These lenses allow us to see very distant galaxies in the universe, some of which could not otherwise be observed. That’s the marvelous reality of galaxy clusters acting as gravitational lenses.

Celebrating Hubble’s 25th Anniversary

In April, Hubble will celebrate a quarter-century in space. The telescope, launched into orbit in 1990, has become one of NASA’s most beloved and successful missions, its images changing our understanding of the universe and taking root in our cultural landscape. Hubble pictures have not only expanded our scientific knowledge, they have altered the way we imagine the cosmos to appear.

pillars 1

Hubble took its iconic “Pillars of Creation” image of these star-forming clouds of gas and dust in the Eagle Nebula in 1995. Credit: NASA, ESA, STScI, J. Hester and P. Scowen (Arizona State University)

Hubble’s prolonged success has been a testament to its innovative design, which allowed it to be periodically updated by astronauts with new equipment and improved cameras. Hubble  has been able, to an extent, to keep up with technological changes over the past 25 years. The benefits are evident when comparing the images of the past and present.

pillars 2

This new image of the Eagle Nebula’s “Pillars of Creation” was taken in 2014 to launch Hubble’s year-long celebration of its 25th anniversary. The image was captured with Wide Field Camera 3, an instrument installed on the telescope in 2009. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

Hubble’s new instruments — specifically, the near-infrared capabilities of Wide Field Camera 3 — are what makes the Frontier Fields project possible. The faint infrared light of the most distant, gravitationally lensed galaxies sought in the Frontier Fields project would be beyond the reach of Hubble’s earlier cameras. Frontier Fields highlights Hubble’s continuing quest to blaze new trails in astronomy — and pave the path for the upcoming Webb Space Telescope — so it makes sense that its imagery is included in a collection of 25 of Hubble’s significant images, specially selected for the anniversary year.

The immense gravity in this foreground galaxy cluster, Abell 2744, warps space to brighten and magnify images of far-more-distant background galaxies as they looked over 12 billion years ago, not long after the big bang.  This is the first of the Frontier Fields to be imaged.

Abell 2744, the first of the Frontier Fields to be imaged, is part of Hubble’s 25th anniversary collection of top images. The immense gravity of the foreground galaxy cluster warps space to brighten and magnify images of far-more-distant background galaxies. Credit: NASA, ESA, and J. Lotz, M. Mountain, A. Koekemoer, and the HFF Team (STScI)

 

The 25th birthday is a significant milestone, so Hubble is throwing a year-long celebration, with events happening in communities and online throughout 2015. Last week, Tony Darnell hosted a discussion of the beauty and scientific relevance of the Hubble 25th anniversary images, one of the many anniversary-themed Hubble Hangouts he’ll be doing as the months go on. To keep an eye on upcoming events, see the images, and learn about the science, visit our special 25th anniversary website, Hubble25th.org.

Light Detectives: Using Color to Estimate Distance

Distances are notoriously difficult to measure in astronomy. Astronomers use many methods for estimating distances, but the farther away an object is, the more uncertain the results. Cosmological distances, distances on the largest scales of our universe, are the most difficult to estimate. To measure the distances to the farthest galaxies, those gravitationally lensed by massive foreground galaxy clusters, astronomers really have their work cut out for them.

If a massive stellar explosion, known as a supernova, happens to go off in a galaxy and we catch it, then we can use the “standard candle” method of computing the distance to the galaxy. Supernovae are expected to be discovered in the Frontier Fields, but not at the numbers that will help us find distances to most of the galaxies in the images. Without these standard candles, astronomers must use other means to estimate distances.

A Spectrum is Worth a Thousand Pictures

One of the more accurate methods for measuring the distance to a distant galaxy involves obtaining a spectrum of the galaxy. Getting a galaxy’s spectrum basically means taking the light from that galaxy and breaking it up into its component colors, much like a prism breaks up white light into the rainbow of visible colors. By comparing the brightness of light at each component color, a spectrum can give us a wealth of information. This can include detailed information about a galaxy’s composition, temperature, and how fast it is moving relative to us. Because the universe is expanding, we observe most galaxies, and all distant galaxies, to be moving away from us.

When looking at a distant galaxy’s spectrum, the expansion of the universe causes the component colors in the spectrum to be stretched to longer wavelengths. For visible light, red has the longest wavelengths, which leads to the term ‘redshift’. This cosmological redshift can be accurately measured from a spectrum. Astronomers then use mathematical models of the expansion rate of our universe to convert the measured redshift into an estimate of distance. Larger values of redshift correspond to larger distances.

This video, developed by the Office of Public Outreach at the Space Telescope Science Institute, gives a demonstration of how light is redshifted as it travels through the expanding universe. Here, the lightbulb stands in place of a galaxy. As the universe expands, it stretches the light traveling through the universe, increasing the light’s wavelength. As the wavelength increases, it becomes more red. Light traveling longer distances through the universe will be stretched/reddened more than light traveling short distances. This is why astronomers use instruments sensitive to redder light, including infrared light, when they attempt to observe the light from very distant galaxies. Watch this video on Youtube.

Larger redshifts not only correspond to larger distances, but they also correspond to earlier times in our universe’s history. This is because light takes time to travel to us from these distant galaxies. The more distant the galaxy, the longer the light has been traveling before we intercept it with sensitive telescopes, like Hubble.

Assuming typical contemporary mathematical models, the universe is about 13.8 billion years old. Galaxies at a redshift of 1 are seen as they existed when the universe was about 6 billion years old.  Galaxies at a redshift of 3 are seen as they existed when the universe was about 2 billion years old. Galaxies at a redshift of 6 are seen as they existed when the universe was about 1 billion years old.  Galaxies at a redshift of 10 are seen as they existed when the universe was only about 500 million years old.

It is notoriously difficult to obtain a spectrum of a very distant galaxy.  They are very faint, and an accurate spectrum relies on obtaining a lot of light.  One is, after all, taking what little light you get and breaking it up further into the component colors, meaning that you start with little light and get out even less light at each component color.  Getting enough light to take an accurate spectrum of a distant galaxy requires very lengthy observations with sensitive telescopes.  This is not always feasible.

Redshifts measured via spectra are called spectroscopic redshifts. Many of the nearer galaxies in Abell 2744 have measured spectroscopic redshifts. There will likely be many follow-up observations from ground- and space-based observatories to obtain spectra of many of the fainter and more distant galaxies in the Frontier Fields. So stay tuned!

I Can’t Obtain a Spectrum!  What to do?

If you do not have a spectrum, are there other ways to estimate the redshift and distance to a galaxy?  Yes!  Just take a look at the galaxy’s colors.

All Hubble images are taken with filters. Blue filters allow Hubble’s instruments to capture only blue light, red filters allow Hubble’s instruments to capture only red light, and so on. By comparing a galaxy’s brightnesses in these different colors, astronomers can estimate the distance to the galaxy. The redder the color, the more likely the galaxy is to be redshifted, and thus, farther away.

This technique of using color to estimate redshift is called photometric redshift. The following two primary methods are used for estimating a photometric redshift:

  1. compare the colors of your high-redshift galaxy candidate to a set of typical galaxy color templates at various redshifts, or
  2. compare the colors of your high-redshift galaxy candidate to a set of galaxies with measured spectroscopic redshifts and, utilizing specialized software, compute the most likely redshift for your galaxy.

In the first case, the photometric redshift comes from the best match between the observed high-redshift candidate colors and the colors of the template galaxies. The template galaxy colors stem from observations of galaxies that tend to be relatively close but are then mathematically reddened over a range of redshift values.

In the second case, astronomers use a set of observed galaxies whose redshifts have been measured spectroscopically, as explained in the prior section. This set contains galaxies at various redshifts. They then use machine-learning algorithms to compare the colors of this set of galaxies with the colors of the target high-redshift galaxy candidate. The software selects the most likely redshift.

Whichever method is used, astronomers are careful to give confidence levels in their calculations. For the computation of photometric redshift, there is typically an uncertainty of around a few percent for high-quality data. In addition, there is the lingering issue of whether the high-redshift galaxy candidate is truly redshifted, or if it is a nearer galaxy that is intrinsically redder. It is not uncommon to read results where astronomers find a galaxy with a probable high photometric redshift and a less probable low photometric redshift, or vice versa.

Zitrin_etal_2014_Abell2744_Models_3_v2

Credit: Adapted from Adi Zitrin, et al., ApJ, 793 (2014). Shown is a high-redshift galaxy candidate in Hubble’s observations of Abell 2744, discovered using filters. Dark regions represent light in these images. Notice how the galaxy drops out of the image in the bluest filters. This is a hint that the galaxy may be significantly redshifted.

Many of the first results for the Frontier Fields utilize photometric redshifts. In the absence of spectra, photometric redshifts are the next best thing to obtaining estimates of distances for large samples of galaxies. They are readily computed from the current Frontier Fields data.

What is Dark Energy?

There is a dark side to the universe; in fact, most of what makes up our cosmos is dark. In our post, entitled “What Is Dark Matter?” we introduced this pie chart that shows the relative composition of everything in the universe.

121236_NewPieCharts720

Composition of matter in the universe. These numbers have been revised by results from the Planck mission. More info here. Credit: NASA/ESA

This deceptively simple diagram shows the percentages of everything the universe is made of. Embedded in this uncomplicated, straightforward pie chart is a story full of surprises and anxiety.

Measuring the Universe

With the exception of Einstein’s “biggest blunder,” few prior to the 1990’s had any expectation that a cosmological force, such as dark energy, even existed. It was thought that the universe was solely comprised of normal matter and dark matter. There was much debate on the nature of dark matter.  How much is there? How much is made of exotic undiscovered particles versus the more mundane but visibly dark stuff like planets, small stars, etc.?  Much has been learned, but dark matter is still largely a mystery today.  Theories and experiments abound to find all constituents of the missing dark matter, particularly the exotic variety that does not contain normal matter, i.e., those particles that do not interact with normal matter other than via gravitational force.

Dark matter and normal matter both have one thing in common: gravity. Thus, the expectation for astronomers was that they would observe some decrease in the expansion rate of the universe over time due to the pull of gravity from all of the matter in the universe. In the 1990’s, two groups of astronomers attempted to measure the deceleration rate of the universe independently by looking at a whole bunch of Type 1a supernovae.  Type 1a supernovae are the explosions of a certain type of star, where the explosions themselves all have the same intrinsic brightness. You can determine how far away the star is by how bright it appears to us; the dimmer a Type 1a supernova appears, the farther away it must be.  Just like the equivalent of a standard 60–watt lightbulb, finding these “standard candles” allows astronomers to accurately measure the distances, and thus the time in the past, where these explosions took place.

Click here for more information on how Type 1a supernovae were used to measure distances.

What the astronomers actually discovered was far more surprising, and it was important that two different groups did this because, if only one had done it, no one would have believed what actually happened. These teams of astronomers noticed that distant supernovae, whose light from the early epochs of the universe was just now reaching our telescopes, were fainter and thus farther away than expected. In 1998, these two groups both declared that the universe wasn’t decelerating at all – it was accelerating!

This was a completely unexpected result — no one saw it coming. I mean, the universe is full of normal matter and dark matter, all gravitationally pulling on each other as the universe expands. Shouldn’t that mean the universe is slowing down its expansion? One could hear hyperventilating cosmologists from across the globe.

After everyone started to calm down, astronomers began to ask, “OK, so what does it take to have an accelerating universe?”

The answer is, you need something else besides matter. Whatever that is, we call it dark energy.

But What Does Dark Energy Mean?

After the initial surprise of finding an accelerating universe wore off and people started thinking about it, astronomers did something they rarely do — they accepted the idea rather quickly. Usually, an unexpected result like this generates huge debates among scientists, and this did too. The thing is, the notion of a cosmological force like dark energy now solved a lot more problems than it created. In an uncharacteristically short period of time, people started warming to the idea of dark energy.

As a function of time, galaxies are moving away from us at a faster and faster rate, and that is what is meant by an accelerating universe. The discovery of dark energy has brought the ultimate fate of our universe back into question. Will dark energy continue to increase its dominance over gravity and cause our universe to rip apart — a potential fate known as the Big Rip? Or will the repulsive force of dark energy and the attractive force of gravity balance out so that the universe expands forever at a constant, non-accelerating rate? With the current understanding of dark energy, it seems improbable that gravity will reverse the expansion and collapse the universe back in on itself. However, the nature of dark energy is not well understood yet.

 

What’s Next for Dark Energy?

Right now, astronomers are making observations designed to constrain some of the many dark energy models that are out there.  The nature of this research is often done from the ground so that wide areas of the sky can be observed for a very long time. This kind of campaign is not well-suited to a high-demand telescope like the Hubble Space Telescope. The idea is to “constrain,” or better understand, the expansion rate of the universe, and measure the growth of large–scale structure (like galaxy clusters).

Past surveys like the Sloan Digital Sky Survey have made some progress, and current projects like the Dark Energy Survey (DES) has started its observing runs. DES will observe 5,000 square degrees of the night sky over 525 nights, making measurements that should help us whittle down some of the many dark–energy models presently being considered. Currently being built is the Large Synoptic Survey Telescope, an 8.4–meter ground-based telescope in Chile, which will image the entire sky every few nights at several wavelengths, and will no doubt play a large role in helping us understand dark energy.

Space-based telescopes do have an essential role to play in characterizing dark energy. For example, Hubble has played a key role in getting data on distant supernovae — hence the discovery of dark energy. It is the combination of ground-based large surveys with space-based pointed deep follow-ups that give us our breakthroughs. Future missions are being envisioned to build on the best of both ground-based surveys and space-based observations. The Wide-Field Infrared Survey Telescope (WFIRST) will use a Hubble-class, space-based telescope to survey a large portion of the sky in an effort to better constrain the nature of dark energy through the history of the universe.

Frontier Fields and Dark Energy

While the Frontier Fields were not designed to capture the large numbers of supernovae needed to explore dark energy through cosmic time, the observations of strong galaxy cluster lensing will be used in combination with cosmological measurements from other missions to help constrain the nature of dark energy.  Stay tuned for more!

 

James Edwin Webb: Turning Imagination into Reality

by Holly Ryer and Ann Jenkins

The Frontier Fields program peers into the universe’s distant past, yet it also offers a glimpse of the future work that the powerful James Webb Space Telescope will conduct. Webb, known as Hubble’s successor, will use infrared vision to detect galaxies beyond even Hubble’s reach.

But the man for whom the Webb telescope is named is not commonly linked to space science. James Edwin Webb (1906–1992) wasn’t a scientist or engineer; he was a businessman, attorney, and manager. Still, many believe that this second administrator of NASA, who ran the fledgling agency from 1961 to 1968, did more to advance science and space exploration than perhaps any other government official. He laid the foundations at NASA for one of the most successful periods of astronomical discovery, one that continues today.

James Edwin Webb, the second administrator of NASA, was a staunch champion of space exploration. Photo credit: NASA.

James Webb was born in Granville County, N.C. He completed his college education at the University of North Carolina at Chapel Hill, where he received a degree in education. Webb then became a second lieutenant in the United States Marine Corps and served as a Marine Corps pilot. Afterward, he studied law at the George Washington University Law School in Washington, D.C. and was admitted to the Bar of the District of Columbia in 1936.

Webb’s long career in public service included serving as director of the Bureau of Budget and Under Secretary of State under President Harry Truman. In 1961, when he was selected by President John Kennedy to serve as the NASA administrator, Webb was reluctant to take the job. He assumed that it might be better handled by someone with a firmer grasp of science or technology. However, Kennedy wanted a leader with keen political insight and management skills for the position.

Webb oversaw great progress in the Space Program while serving as NASA’s administrator. During his tenure, NASA developed robotic spacecraft, which explored the lunar environment so that astronauts could do so later. On his watch, NASA also sent scientific probes to Mars and Venus. By the time Webb retired, NASA had launched more than 75 space science missions to study the stars and galaxies, our own Sun and the as-yet-unknown environment of space above the Earth’s atmosphere.

Webb also weathered the turmoil of the 1967 Apollo 1 tragedy, in which three astronauts—“Gus” Grissom, Edward White, and Roger Chaffee—died in a flash fire during a simulation test on the launch pad at Kennedy Space Center in Florida. Firmly committed to getting NASA back on its feet after this terrible setback, Webb strove to maintain support for the program. His success helped to pave the way to future NASA triumphs, such as the historic Apollo moon landing, which took place shortly after his retirement from NASA in 1968.

Webb remained in Washington, D.C., where he served on several advisory boards and as a regent of the Smithsonian Institution. In 1981, he was awarded the Sylvanus Thayer Award by the United States Military Academy at West Point for his dedication to his country. Former NASA Administrator Sean O’Keefe said of Webb: “He took our nation on its first voyages of exploration, turning our imagination into reality.”

Edwin Hubble Expands Our View of the Universe

by Donna Weaver and Ann Jenkins

American astronomer Edwin Powell Hubble (1889–1953) never lived to see the development or launch of his namesake, the Hubble Space Telescope. But like the telescope that bears his name, Dr. Hubble played a crucial role in advancing the field of astronomy and changing the way we view the universe. As Hubble’s namesake is breaking new ground in the exploration of the distant universe via the Frontier Fields, let us take a step back and learn more about Hubble, the man.

This is an illustration of Dr. Edwin Powell Hubble.

Edwin Hubble is regarded as one of the most important observational cosmologists of the 20th century. Illustration credit: Kathy Cordes of STScI.

As a young boy, Edwin Hubble read tales of traveling to undersea cities, journeying to the center of the Earth, and trekking to the remote mountains of South Africa. These stories by adventure novelists Jules Verne and H. Rider Haggard stoked young Hubble’s imagination of faraway places. He fulfilled those childhood dreams as an astronomer, exploring distant galaxies with a telescope and developing celestial theories that revolutionized astronomy.

But Hubble didn’t settle immediately on the astronomy profession. He studied law as a Rhodes Scholar at Queens College in Oxford, England. A year after passing the bar exam, Hubble realized that his love of exploring the stars was greater than his attraction to law, so he abandoned law for astronomy. “I chucked the law for astronomy and I knew that, even if I were second rate or third rate, it was astronomy that mattered,” Hubble said. (1)

Our Galaxy Is Not Alone

He studied astronomy at the University of Chicago and completed his doctoral thesis in 1917. After serving in World War I, he began working at the Mount Wilson Observatory near Pasadena, Calif., studying the faint patches of luminous “fog” or nebulae — the Latin word for clouds — in the night sky. Hubble and other astronomers were puzzled by these gas clouds and wanted to know what they were.

Using the 100-inch reflecting Hooker Telescope — the largest telescope of its day — Hubble peered beyond our Milky Way Galaxy to study an object known then as the Andromeda Nebula. He discovered special, “variable stars” on the outskirts of the nebula that changed in brightness over time. These stars brightened and dimmed in a predictable way that allowed Hubble to determine their distances from Earth. Hubble showed that the distance to the nebula was so great that it had to be outside the Milky Way Galaxy. Hubble realized that the Andromeda Nebula was a separate galaxy much like our own. The discovery of the Andromeda Galaxy helped change our understanding of the universe by proving the existence of other galaxies.

Hubble also devised the classification system for galaxies, grouping them by sizes and shapes, that astronomers still use today. He also obtained extensive evidence that the laws of physics outside our galaxy are the same as on Earth, verifying the principle of the uniformity of nature.

The Expanding Universe

As Hubble continued his study, he made another startling discovery: The universe is expanding. In 1929 he determined that the more distant the galaxy is from Earth, the faster it appears to move away. Known as Hubble’s Law, this discovery is the foundation of the Big Bang theory. The theory says that the universe began after a huge cosmic explosion and has been expanding ever since. Hubble’s discovery is considered one of the greatest triumphs of 20th-century astronomy.

Albert Einstein could have foretold Hubble’s discovery in 1917 when he applied his newly developed General Theory of Relativity to the universe. His theory — that space is curved by gravity — predicted that the universe could not be static but had to expand or contract. Einstein found this prediction so unbelievable that he modified his original theory to avoid the problem. Upon learning of Hubble’s discovery, Einstein immediately regretted revising his theory.

For his many contributions to astronomy, Hubble is regarded as one of the most important observational cosmologists of the 20th century.

(1) As quoted by Nicholas U. Mayall (1970). Biographical memoir. Volume 41, Memoirs of the National Academy of Sciences, National Academy of Sciences (U.S.). National Academy of Sciences. p. 179.

How Hubble Observations Are Scheduled

This is the third in a three-part series.

After observing time is awarded, the Institute creates a long-range plan. This plan ensures that the diverse collection of observations are scheduled as efficiently as possible. This task is complicated because the telescope cannot be pointed too close to bright objects like the Sun, the Moon, and the sunlit side of Earth. Adding to the difficulty, most astronomical targets can only be seen during certain months of the year; some instruments cannot operate in the high space-radiation areas of Hubble ’s orbit; and the instruments regularly need to be calibrated. These diverse constraints on observations make telescope scheduling a complex optimization problem that Institute staff are continually solving, revising, and improving.”

Preparing for an observation also involves selecting guide stars to stabilize.the telescope’s pointing and center the target in the instrument’s field of view. The selection is done automatically by the Institute’s computers, which choose two stars per pointing from a catalog of almost a billion stars. These guide stars will be precisely positioned within the telescope’s fine guidance sensors, ensuring that the target region and orientation of the sky is observed by the desired instrument.”]

A weekly, short-term schedule is created from the long-range plan. This schedule is translated into detailed instructions for both the telescope and its instruments to perform the observations and calibrations for the week. From this information, daily command loads are then sent from the Institute to NASA’s Goddard Space Flight Center to be uplinked to Hubble.

Hubble’s Flight Operations Team resides in the Space Telescope Operations Control Center at NASA’s Goddard Space Flight Center in Greenbelt, Md.  In addition to monitoring the health and safety of the telescope, they also send command loads to the spacecraft, monitor their execution, and arrange for transmission of science and engineering data to the ground.

Hubble’s Flight Operations Team resides in the Space Telescope Operations Control Center at NASA’s Goddard Space Flight Center in Greenbelt, Md. In addition to monitoring the health and safety of the telescope, they also send command loads to the spacecraft, monitor their execution, and arrange for transmission of science and engineering data to the ground.

The journey from proposal through selection and scheduling culminates in the email informing astronomers that their data is ready to be accessed. Usually, the process takes more than a year from idea to data—sometimes even longer. Of course, that’s when the real work begins—the analysis of the data and the hard work of uncovering another breakthrough Hubble discovery!

How Hubble Observations Are Proposed

This is the first in a three-part series. 

Time on the Hubble Space Telescope is a precious commodity. As a space telescope, Hubble can observe 24 hours a day, but its advantageous perch also attracts a large number of astronomers who want to use it. The current oversubscription rate—the amount of time requested versus time awarded—is six to one.

The process of observing with Hubble begins with the annual Call for Proposals issued by the Space Telescope Science Institute to the astronomical community. Astronomers worldwide are given approximately two months to submit a Phase I proposal that makes a scientific case for using the telescope. Scientists typically request the amount of telescope time they desire in orbits. It takes 96 minutes for the telescope to make one trip around the Earth, but because the Earth usually blocks the target for part of the orbit, typical observing time is only about 55 minutes per orbit.

Longer observations require a more compelling justification since only a limited number of orbits are available. Winning proposals must be well reasoned and address a significant astronomical question or issue. Potential users must also show that they can only accomplish their observations with Hubble ’s unique capabilities and cannot achieve similar results with a ground-based observatory.

The Institute assembles a time allocation committee (TAC), comprising experts from the astronomical community, to determine which proposals will receive observing time. The committee is subdivided into panels that review the proposals submitted within a particular astronomical category. Sample categories include stellar populations, solar system objects, and cosmology. The committee organizers take care to safeguard the process from conflicts of interest, as many of the panel members are likely to have submitted, or to be a co-investigator, on their own proposals.

The time allocation committee (TAC) discusses which proposals will receive observing time on Hubble.

The time allocation committee (TAC) discusses which proposals will receive observing time on Hubble.

Proposals are further identified as general observer (GO), which range in size from a single orbit to several hundred, or snapshot, which require only 45 minutes or less of telescope time. Snapshots are used to fill in gaps within Hubble ’s observing schedule that cannot be filled by general observer programs. Once the committee has reviewed the proposals and voted on them, it provides a recommended list to the Institute director for final approval.

In my next post, I will discuss how observations are planned.